高斯消去法的改进形式为Gauss-Jordan Elimination Method,要求每一行的主元素所在列元素全部消去为0,除了主元素本身。区别如下:

代码实现如下:
# -*- coding: utf-8 -*-
# @Author : ZhaoKe
# @Time : 2022-09-05 23:34
from typing import List
# input a augmented matrix, output its simpler form
def GaussJordanMethod(matrix: List[List]) -> List[List]:
PREC = 3
m, n = len(matrix), len(matrix[0])
# from left to right
for j in range(n):
# 主元素为0的话,要交换行令这一行主元素不为0
if j >= m:
break
if matrix[j][j] == 0:
for k in range(j + 1, m):
if matrix[k][j] == 0:
continue
else:
matrix[j], matrix[k] = matrix[k], matrix[j]
print(matrix)
break
# from above to bottom
# 为了实现Gauss-Jordan,pivot位置的元素应该置为1
fac = matrix[j][j]
for l in range(0, n):
matrix[j][l] = matrix[j][l] / fac
# 不再拘泥于对角线下方消除,整整一列都要消除
for i in range(m):
# 主元素不可以消去,直接跳过该行
if i == j:
continue
# 当前行的该列元素为0的话,不必执行消去步骤,跳过即可
if matrix[i][j] == 0:
continue
# replace the jth equation by a combination of itself plus a multiple of the ith equation
coef = matrix[i][j]
for k in range(n):
matrix[i][k] = round(matrix[i][k] - coef * matrix[j][k], PREC)
print(matrix[i])
# elimination end
print(matrix)
# solution as follow
for i in range(m - 1, -1, -1):
for j in range(n - 1, -1, -1):
if matrix[i][j] == 0:
continue
else:
print("x" + str(i+1), "=", matrix[i][-1])
break
return matrix
if __name__ == '__main__':
# input_m0 = [[2, 1, 1, 1], [6, 2, 1, -1], [-2, 2, 1, 7]] # 结果正确
# input_m1 = [[0, 1, -1, 3], [-2, 4, -1, 1], [-2, 5, -4, -2]] # 结果正确
input_m2 = [[2, 2, 6, 4], [2, 1, 7, 6], [-2, -6, -7, -1]] # 结果正确
GaussJordanMethod(input_m2)
# 病态方程:
# input_m3 = [[47, 28, 19], [89, 53, 36]] # 该程序暂不适合病态方程的数值计算,另开随笔研究该问题
# GaussJordanMethod(input_m3)
经验证该程序正确
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/tech/python/287831.html