为什么需要锁
锁是 sync 包中的核心,它主要有两个方法,分别是加锁(Lock)和解锁(Unlock)。
在并发的情况下,多个线程或协程同时其修改一个变量,使用锁能保证在某一时间内,只有一个协程或线程修改这一变量。
不使用锁时,在并发的情况下可能无法得到想要的结果,如下所示:
package main import ( "fmt" "time" ) func main() { var a = 0 for i := 0; i < 1000; i++ { go func(idx int) { a += 1 fmt.Println(a) }(i) } time.Sleep(time.Second) }
从理论上来说,上面的程序会将 a 的值依次递增输出,然而实际结果却是下面这样子的。
537
995
996
997
538
999
1000
通过运行结果可以看出 a 的值并不是按顺序递增输出的,这是为什么呢?
协程的执行顺序大致如下所示:
- 从寄存器读取 a 的值;
- 然后做加法运算;
- 最后写到寄存器。
按照上面的顺序,假如有一个协程取得 a 的值为 3,然后执行加法运算,此时又有一个协程对 a 进行取值,得到的值同样是 3,最终两个协程的返回结果是相同的。
而锁的概念就是,当一个协程正在处理 a 时将 a 锁定,其它协程需要等待该协程处理完成并将 a 解锁后才能再进行操作,也就是说同时处理 a 的协程只能有一个,从而避免上面示例中的情况出现。
互斥锁 Mutex
上面的示例中出现的问题怎么解决呢?加一个互斥锁 Mutex 就可以了。那什么是互斥锁呢 ?互斥锁中其有两个方法可以调用,如下所示:
func (m *Mutex) Lock()
func (m *Mutex) Unlock()
将上面的代码略作修改,如下所示:
package main import ( "fmt" "sync" "time" ) func main() { var a = 0 var lock sync.Mutex for i := 0; i < 1000; i++ { go func(idx int) { lock.Lock() defer lock.Unlock() a += 1 fmt.Printf("goroutine %d, a=%d/n", idx, a) }(i) } // 等待 1s 结束主程序 // 确保所有协程执行完 time.Sleep(time.Second) }
运行结果如下:
goroutine 995, a=996
goroutine 996, a=997
goroutine 997, a=998
goroutine 998, a=999
goroutine 999, a=1000
需要注意的是一个互斥锁只能同时被一个 goroutine 锁定,其它 goroutine 将阻塞直到互斥锁被解锁(重新争抢对互斥锁的锁定),示例代码如下:
package main import ( "fmt" "sync" "time" ) func main() { ch := make(chan struct{}, 2) var l sync.Mutex go func() { l.Lock() defer l.Unlock() fmt.Println("goroutine1: 我会锁定大概 2s") time.Sleep(time.Second * 2) fmt.Println("goroutine1: 我解锁了,你们去抢吧") ch <- struct{}{} }() go func() { fmt.Println("goroutine2: 等待解锁") l.Lock() defer l.Unlock() fmt.Println("goroutine2: 欧耶,我也解锁了") ch <- struct{}{} }() // 等待 goroutine 执行结束 for i := 0; i < 2; i++ { <-ch } }
上面的代码运行结果如下:
goroutine1: 我会锁定大概 2s
goroutine2: 等待解锁
goroutine1: 我解锁了,你们去抢吧
goroutine2: 欧耶,我也解锁了
读写锁
读写锁有如下四个方法:
-
写操作的锁定和解锁分别是
func (*RWMutex) Lock
和func (*RWMutex) Unlock
;
-
读操作的锁定和解锁分别是
func (*RWMutex) Rlock
和func (*RWMutex) RUnlock
。
读写锁的区别在于:
- 当有一个 goroutine 获得写锁定,其它无论是读锁定还是写锁定都将阻塞直到写解锁;
- 当有一个 goroutine 获得读锁定,其它读锁定仍然可以继续;
- 当有一个或任意多个读锁定,写锁定将等待所有读锁定解锁之后才能够进行写锁定。
所以说这里的读锁定(RLock)目的其实是告诉写锁定,有很多协程或者进程正在读取数据,写操作需要等它们读(读解锁)完才能进行写(写锁定)。
我们可以将其总结为如下三条:
- 同时只能有一个 goroutine 能够获得写锁定;
- 同时可以有任意多个 gorouinte 获得读锁定;
- 同时只能存在写锁定或读锁定(读和写互斥)。
示例代码如下所示:
package main import ( "fmt" "math/rand" "sync" ) var count int var rw sync.RWMutex func main() { ch := make(chan struct{}, 10) for i := 0; i < 5; i++ { go read(i, ch) } for i := 0; i < 5; i++ { go write(i, ch) } for i := 0; i < 10; i++ { <-ch } } func read(n int, ch chan struct{}) { rw.RLock() fmt.Printf("goroutine %d 进入读操作.../n", n) v := count fmt.Printf("goroutine %d 读取结束,值为:%d/n", n, v) rw.RUnlock() ch <- struct{}{} } func write(n int, ch chan struct{}) { rw.Lock() fmt.Printf("goroutine %d 进入写操作.../n", n) v := rand.Intn(1000) count = v fmt.Printf("goroutine %d 写入结束,新值为:%d/n", n, v) rw.Unlock() ch <- struct{}{} }
其执行结果如下:
goroutine 0 进入读操作…
goroutine 0 读取结束,值为:0
goroutine 3 进入读操作…
goroutine 1 进入读操作…
goroutine 3 读取结束,值为:0
goroutine 1 读取结束,值为:0
goroutine 4 进入写操作…
goroutine 4 写入结束,新值为:81
goroutine 4 进入读操作…
goroutine 4 读取结束,值为:81
goroutine 2 进入读操作…
goroutine 2 读取结束,值为:81
goroutine 0 进入写操作…
goroutine 0 写入结束,新值为:887
goroutine 1 进入写操作…
goroutine 1 写入结束,新值为:847
goroutine 2 进入写操作…
goroutine 2 写入结束,新值为:59
goroutine 3 进入写操作…
goroutine 3 写入结束,新值为:81
下面再来看两个示例。
【示例 1】多个读操作同时读取一个变量时,虽然加了锁,但是读操作是不受影响的。(读和写是互斥的,读和读不互斥)
package main import ( "sync" "time" ) var m *sync.RWMutex func main() { m = new(sync.RWMutex) // 多个同时读 go read(1) go read(2) time.Sleep(2*time.Second) } func read(i int) { println(i,"read start") m.RLock() println(i,"reading") time.Sleep(1*time.Second) m.RUnlock() println(i,"read over") }
运行结果如下:
1 read start
1 reading
2 read start
2 reading
1 read over
2 read over
【示例 2】由于读写互斥,所以写操作开始的时候,读操作必须要等写操作进行完才能继续,不然读操作只能继续等待。
package main import ( "sync" "time" ) var m *sync.RWMutex func main() { m = new(sync.RWMutex) // 写的时候啥也不能干 go write(1) go read(2) go write(3) time.Sleep(2*time.Second) } func read(i int) { println(i,"read start") m.RLock() println(i,"reading") time.Sleep(1*time.Second) m.RUnlock() println(i,"read over") } func write(i int) { println(i,"write start") m.Lock() println(i,"writing") time.Sleep(1*time.Second) m.Unlock() println(i,"write over") }
运行结果如下:
1 write start
3 write start
1 writing
2 read start
1 write over
2 reading
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/1067.html