虽然说增加了高速缓存提高了CPU的处理效率,但是也带来了新的问题 :
现代计算机都是多核CPU,一开始,内存中的变量A的值是1,第一个CPU读取了数据,第二个CPU也将数据读取到了自己的高速缓存当中,当第一个CPU对变量A进行加1操作时,变量A的值变成了2,然后将将变量A的值写回内存中,这时第二个CPU也对变量A进行加1操作时,由于第二个CPU中高速缓存中的值还是1,所以加1操作后的结果为2,然后第二个CPU又将变量A的值同步回内存中,这样就导致执行了两次加1操作后,变量A的值最终是2,而不是3。
这种被多个CPU访问的变量,通常称为共享变量。
而产生的上面的问题,就是引入了高速缓存后的,主内存和缓存内容不一致的问题。
因为每个处理器有自己的高速缓存,但是它们又共享同一块主内存,所以必然会出现主内存不知该以哪个高速缓存中的变量为准的情况。
上面这个缓存不一致的问题,我们先记下来,继续来看Java内存模型,其实Java内存模型描述的上面讲的计算机系统高速缓存和内存之间的关系类似。
Java内存模型描述了,各种变量的访问规则,以及将变量存储到内存和从内存读取变量的这种底层细节。
在Java内存模型中关注的变量都是共享变量(实例变量、类变量)。
所有的共享变量都是存储在主内存中的,但是每个线程在访问变量的时候也都会在自己的工作内存(处理器高速缓存)中保留一份共享变量的副本。
Java内存模型(Java Memory Model,简称JMM)规定:
线程对变量的所有操作(读,写)都必须在工作内存中进行,不能直接操作主内存中的数据。
不同线程之间 也不能直接访问对方工作内存中的变量,线程间的变量值传递必须通过主内存进行中转传递。
在JMM中工作内存和主内存的关系如下图:
Volatile的可见性(保证立即可见)
继续我们上面的缓存一致性的问题,这个问题,在Java内存模型中,就是可见性的问题,即一个线程修改了共享变量的值,对另一个线程来说是不是立即可见的。如果不是立即可见的,那么就会出现缓存一致性的问题,如果是立即可见的,那么另一个线程在进行操作的时候,拿到的变量值就是最新的。就可以解决可见性的问题。
那么怎么解决可见性问题呢?
-
方案一:加锁
将共享变量加锁,无论是synchronized
还是Lock
都可以,加锁达到的目的是在同一时间内只能有一个线程能对共享变量进行操作,就是说,共享变量从读取到工作内存到更新值后,同步回主内存的过程中,其他线程是操作不了这个变量的。这样自然就解决了可见性的问题了,但是这样的效率比较低,操作不了共享变量的线程就只能阻塞。
-
方案二:volatile修饰修饰共享变量
当一个共享变量被volatile
修饰后,会保证每个线程将变量修改后的值立即同步回主内存中,当其他线程有需要读取变量时会读取到最新的变量值。
那么volatile做了些什么操作就能解决可见性的问题呢?
被volatile修饰的变量,在被线程操作时,会有这样的机制:
就是线程对变量操作时会从主内存中读取到自己的工作内存中,当线程对变量进行了修改后,那么其他已经读取了此变量的线程中的变量副本就会失效,这样其他线程在使用变量的时候,发现已经失效,那么就会去主内存中重新获取,这样获取到的就只最新的值了。
那么volatile
这个关键字是如何实现这套机制的呢?
因为一台计算机有多台CPU,同一个变量,在多个CPU中缓存的值有可能不一样,那么以谁缓存的值为准呢?
既然大家都有自己的值,那么各个CPU间就产生了一种协议,来保证按照一定的规律为准,来确定共享变量的准确值,这样各个CPU在读写共享变量时都按照协议来操作。
这就是缓存一致性协议。
最著名的缓存一致性协议就是Intel的MESI
了,说MESI时,先解释一下,缓存行:
缓存行(cache line):CPU高速缓存的中可以分配的最小存储单位,高速缓存中的变量都是存在缓存行中的。
MESI的核心思想就是,当CPU对变量进行写操作时发现,变量是共享变量,那么就会通知其他CPU中将该变量的缓存行设置为无效状态。当其他CPU在操作变量时发现此变量在的缓存行已经无效,那么就会去主内存中重新读取最新的变量。
那么其他CPU是如何发现变量被修改了的呢?
因为CPU和其他部件的进行通信是通过总线来进行的,所以每个CPU通过嗅探总线上的传播数据,来检查自己缓存的值是不是过期了,当处理器发现自己换成行对应的内存地址被修改后,就会将自己工作内存中的缓存行设置成无须状态,当CPU对此变量进行修改时会重新从系统主内存中读取变量。
Volatile的有序性(禁止指令重排)
一般来说,我们写程序的时候,都是要把先代码从上往下写,默认的认为程序是自顶向下顺序执行的,但是CPU为了提高效率,在保证最终结果准确的情况下,是会对指令进行重新排序的。就是说写在前的代码不一定先执行,在后面的也不一定晚执行。
举个例子:
int a = 5; // 代码1
int b = 8; // 代码2
a = a + 4; // 代码3
int c = a + b; // 代码4
上面四行代码的执行顺序有可能是
JMM在是允许指令重排序的,在保证最后结果正确的情况下,处理器可以尽情的发挥,提高执行效率。
当多个线程执行代码的时候重排序的情况就更为突出了,各个CPU为了提高自己的效率,有可能会产生竞争情况,这样就有可能导致最终执行的正确性。
所以为了保证在多个线程下最终执行的正确性,将变量用volatile
进行修饰,这样就会达到禁止指令重排序的效果(其实也可以通过加锁,还有一些其他已知规则来实现禁止指令重排序,但是我们这里只讨论volatile
的实现方式)。
那么volatile
是如何实现指令重排序的呢?
答案是:内存屏障
内存屏障是一组CPU指令,用于实现对内存操作的顺序限制。
Java编译器,会在生成指令系列时,在适当的位置会插入内存屏障来禁止处理器对指令的重新排序。
volatile
会在变量写操作的前后加入两个内存屏障,来保证前面的写指令和后面的读指令是有序的。
volatile
在变量的读操作后面插入两个指令,禁止后面的读指令和写指令重排序。
有序性,不仅只有volatile能保证,其他的实现方式也能保证,但是如果每一种实现方式都要了解那对于开发人员来说就比较困难了。
所以从JDK5就出现了happen-before原则,也叫先行发生原则。
先行发生原则总结起来就是:如果一个操作A的产生的影响能被另一个操作B观察到,那么可以说,这个操作A先行发生与操作B。
这里所说的影响包括内存中的变量的修改,调用了方法,发送量消息等。
<mark style="margin: 0px; padding: 0.2em; box-sizing: border-box; background: rgb(252, 248, 227); color: rgb(0, 0, 0);">volatile中的先行发生原则是,对一个volatile
变量的写操作,先行发生于后面任何地方对这个变量的读操作。</mark>
Volatile无法保证原子性
原子性,是指一个操作过程要么都成功,要么都失败,是一个独立的完整的。
最后
这份《“java高分面试指南”-25分类227页1000+题50w+字解析》同样可分享给有需要的朋友,感兴趣的伙伴们可挑战一下自我,在不看答案解析的情况,测试测试自己的解题水平,这样也能达到事半功倍的效果!(好东西要大家一起看才香,下载请点击这里)
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/122796.html