大数据Spark集群模式配置

导读 这里我们来看看只使用Spark自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark的Standalone模式体现了经典的master-slave模式。

集群规划:
大数据Spark集群模式配置

1 解压缩文件

将spark-3.0.0-bin-hadoop3.2.tgz.tgz文件上传到Linux并解压缩在指定位置

tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module 
cd /opt/module  
mv spark-3.0.0-bin-hadoop3.2 spark-standalone
2 修改配置文件

1) 进入解压缩后路径的conf目录,修改slaves.template文件名为slaves

mv slaves.template slaves 

2) 修改slaves文件,添加work节点

hadoop102hadoop103hadoop104 

3) 修改spark-env.sh.template文件名为spark-env.sh

mv spark-env.sh.template spark-env.sh

4) 修改spark-env.sh文件,添加JAVA_HOME环境变量和集群对应的master节点

export JAVA_HOME=/opt/module/jdk1.8.0_212 
SPARK_MASTER_HOST=hadoop102SPARK_MASTER_PORT=7077 

注意:7077端口,相当于hadoop3.x内部通信的8020端口,此处的端口需要确认自己的虚拟机配置

5) 分发spark-standalone目录

xsync spark-standalone
3 启动集群

1) 执行脚本命令

sbin/start-all.sh

2) 查看三台服务器运行进程

================hadoop102================ 
3330 Jps 
3238 Worker 
3163 Master 
================hadoop103================ 
2966 Jps 
2908 Worker 
================hadoop104================ 
2978 Worker 
3036 Jps 

3) 查看Master资源监控Web UI界面: http://hadoop102:8080

4 提交应用
bin/spark-submit / 
--class org.apache.spark.examples.SparkPi / 
--master spark://hadoop102:7077 / 
./examples/jars/spark-examples_2.12-3.0.0.jar / 
10 
    –class表示要执行程序的主类
    –master spark://hadoop102:7077 独立部署模式,连接到Spark集群
    spark-examples_2.12-3.0.0.jar 运行类所在的jar包
    数字10表示程序的入口参数,用于设定当前应用的任务数量

执行任务时,会产生多个Java进程
大数据Spark集群模式配置
大数据Spark运行环境:Standalone模式与配置详解
执行任务时,默认采用服务器集群节点的总核数,每个节点内存1024M。

5 配置历史服务

由于spark-shell停止掉后,集群监控hadoop102:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。

1) 修改spark-defaults.conf.template文件名为spark-defaults.conf

mv spark-defaults.conf.template spark-defaults.conf 

2) 修改spark-default.conf文件,配置日志存储路径

spark.eventLog.enabled          true 
spark.eventLog.dir               hdfs://hadoop102:8020/directory 

注意:需要启动hadoop集群,HDFS上的directory目录需要提前存在。

sbin/start-dfs.sh 
hadoop fs -mkdir /directory 

3) 修改spark-env.sh文件, 添加日志配置

export SPARK_HISTORY_OPTS=" 
-Dspark.history.ui.port=18080 
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/directory 
-Dspark.history.retainedApplications=30" 

注:写成一行!!空格隔开!!!

    参数1含义:WEB UI访问的端口号为18080
    参数2含义:指定历史服务器日志存储路径
    参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

4) 分发配置文件

xsync conf 

5) 重新启动集群和历史服务

sbin/start-all.sh 
sbin/start-history-server.sh

6) 重新执行任务

bin/spark-submit / 
--class org.apache.spark.examples.SparkPi / 
--master spark://hadoop102:7077 / 
./examples/jars/spark-examples_2.12-3.0.0.jar / 
10 

7) 查看历史服务:http://hadoop102:18080

6 配置高可用(HA)

所谓的高可用是因为当前集群中的Master节点只有一个,所以会存在单点故障问题。所以为了解决单点故障问题,需要在集群中配置多个Master节点,一旦处于活动状态的Master发生故障时,由备用Master提供服务,保证作业可以继续执行。这里的高可用一般采用Zookeeper设置

集群规划:
大数据Spark集群模式配置
1) 停止集群

sbin/stop-all.sh 

2) 启动Zookeeper

3) 修改spark-env.sh文件添加如下配置

注释如下内容: 
#SPARK_MASTER_HOST=hadoop102#SPARK_MASTER_PORT=7077 
 添加如下内容:#Master监控页面默认访问端口为8080,但是会和Zookeeper冲突,所以改成8989,也可以自定义,访问UI监控页面时请注意 
SPARK_MASTER_WEBUI_PORT=8989 
 export SPARK_DAEMON_JAVA_OPTS=" 
-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104 -Dspark.deploy.zookeeper.dir=/spark" 
注:写成一行!!空格隔开!!!

4) 分发配置文件

xsync conf/ 

5) 启动集群

sbin/start-all.sh

6) 启动hadoop103的单独Master节点,此时hadoop103节点Master状态处于备用状态

[bigdata@hadoop103 spark-standalone]$ sbin/start-master.sh 

7) 提交应用到高可用集群

bin/spark-submit / 
--class org.apache.spark.examples.SparkPi / 
--master spark://hadoop102:7077,hadoop103:7077 / 
./examples/jars/spark-examples_2.12-3.0.0.jar / 
10 

8) 停止hadoop102的Master资源监控进程

9) 查看hadoop103的Master 资源监控Web UI,稍等一段时间后,hadoop103节点的Master状态提升为活动状态

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/124385.html

(0)
上一篇 2021年8月29日
下一篇 2021年8月29日

相关推荐

发表回复

登录后才能评论