目前,大多数 BCI 系统只是使用 1 个或 2 个传感器对几百个神经元进行采样,但是神经科学家希望能够从更大的脑细胞群中收集数据。现在,一支科研小组向未来 BCI 系统的概念迈出了关键一步:该系统采用独立的、无线的微尺度神经传感器的协调网络,每个传感器大约有一粒盐大小,以记录和刺激大脑活动。被称为“neurograins”的传感器独立地记录神经元发射的电脉冲,并将信号以无线方式发送到一个中央枢纽,由其协调和处理这些信号。
在2021年8月12日发表在《自然-电子学》上的一项研究中,该研究小组展示了使用近 50 个这样的自主神经粒来记录实验鼠的神经活动。研究人员说,这些结果是朝着有朝一日能够以前所未有的细节记录大脑信号的系统迈出的一步,从而对大脑如何工作有了新的认识,并为大脑或脊柱受伤的人提供新的疗法。
布朗大学工程学院教授、该研究的资深作者 Arto Nurmikko 说:“脑机接口领域的巨大挑战之一是如何探测大脑中尽可能多的点。到目前为止,大多数 BCI 都是单一的设备–有点像小针床。我们团队的想法是将这种单体分解成微小的传感器,可以分布在整个大脑皮层。这就是我们在这里所能证明的”。
该团队包括来自布朗大学、贝勒大学、加州大学圣地亚哥分校和高通公司的专家,大约四年前开始了开发该系统的工作。隶属于布朗大学卡尼脑科学研究所的 Nurmikko 说,挑战是双重的。第一部分需要将参与检测、放大和传输神经信号的复杂电子装置缩小到微小的硅神经粒芯片中。该团队首先在计算机上设计和模拟电子器件,并经过几次制造迭代来开发可操作的芯片。
第二个挑战是开发接收这些微小芯片信号的体外通信枢纽。该装置是一个薄薄的贴片,大约有拇指印大小,附着在头骨外的头皮上。它的工作方式就像一个微型蜂窝电话塔,采用一种网络协议来协调来自神经脑的信号,每个神经脑都有自己的网络地址。该贴片还以无线方式向神经元供电,这些神经元被设计为使用最少的电力来运作。
布朗大学的博士后研究员、该研究的主要作者 Jihun Lee 说:“这项工作是一个真正的多学科挑战。我们必须汇集电磁学、射频通信、电路设计、制造和神经科学方面的专业知识来设计和操作神经脑系统”。
该小组还测试了这些设备刺激大脑以及从大脑中进行记录的能力。刺激是通过能够激活神经活动的微小电脉冲进行的。研究人员希望,这种刺激是由协调神经记录的同一枢纽驱动的,有朝一日可以恢复因疾病或受伤而丧失的大脑功能。
动物大脑的大小限制了研究小组在这项研究中使用48个神经粒,但数据表明,该系统目前的配置可以支持多达770个。最终,研究小组设想扩大到成千上万的神经粒,这将提供一个目前无法实现的大脑活动图。
原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/127616.html