SDP(8):文本式数据库-MongoDB-Scala基本操作详解编程语言

    MongoDB是一种文本式数据库。与传统的关系式数据库最大不同是MongoDB没有标准的格式要求,即没有schema,合适高效处理当今由互联网+商业产生的多元多态数据。MongoDB也是一种分布式数据库,充分具备大数据处理能力和高可用性。MongoDB提供了scala终端驱动mongo-scala-driver,我们就介绍一下MongoDB数据库和通过scala来进行数据操作编程。

   与关系数据库相似,MongoDB结构为Database->Collection->Document。Collection对应Table,Document对应Row。因为MongoDB没有schema,所以Collection中的Document可以是不同形状格式的。在用scala使用MongoDB之前必须先建立连接,scala-driver提供了多种连接方式:

  val client1 = MongoClient() 
  val client2 = MongoClient("mongodb://localhost:27017") 
   
  val clusterSettings = ClusterSettings.builder() 
         .hosts(List(new ServerAddress("localhost:27017")).asJava).build() 
  val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build() 
  val client = MongoClient(clientSettings)

下面是一些对应的MongoClient构建函数:

  /** 
   * Create a default MongoClient at localhost:27017 
   * 
   * @return MongoClient 
   */ 
  def apply(): MongoClient = apply("mongodb://localhost:27017") 
 
  /** 
   * Create a MongoClient instance from a connection string uri 
   * 
   * @param uri the connection string 
   * @return MongoClient 
   */ 
  def apply(uri: String): MongoClient = MongoClient(uri, None) 
 
  /** 
   * Create a MongoClient instance from a connection string uri 
   * 
   * @param uri the connection string 
   * @param mongoDriverInformation any driver information to associate with the MongoClient 
   * @return MongoClient 
   * @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections. 
   */ 
  def apply(uri: String, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {...} 
  /** 
   * Create a MongoClient instance from the MongoClientSettings 
   * 
   * @param clientSettings MongoClientSettings to use for the MongoClient 
   * @return MongoClient 
   */ 
  def apply(clientSettings: MongoClientSettings): MongoClient = MongoClient(clientSettings, None) 
 
  /** 
   * Create a MongoClient instance from the MongoClientSettings 
   * 
   * @param clientSettings MongoClientSettings to use for the MongoClient 
   * @param mongoDriverInformation any driver information to associate with the MongoClient 
   * @return MongoClient 
   * @note the `mongoDriverInformation` is intended for driver and library authors to associate extra driver metadata with the connections. 
   */ 
  def apply(clientSettings: MongoClientSettings, mongoDriverInformation: Option[MongoDriverInformation]): MongoClient = {

与MongoDB建立连接后可用选定Database:

 val db = client.getDatabase("testdb")

由于没有格式限制,所以testdb不需要预先构建,像文件系统的directory一样,不存在时可以自动创建。同样,db内的collection也是可以自动创建的,因为不需要预先设定字段格式(no-schema):

val db: MongoDatabase = client.getDatabase("testdb") 
val userCollection: MongoCollection[Document] = db.getCollection("users")

collection中Document类的构建函数如下: 

 /** 
   * Create a new document from the elems 
   * @param elems   the key/value pairs that make up the Document. This can be any valid `(String, BsonValue)` pair that can be 
   *                transformed into a [[BsonElement]] via [[BsonMagnets.CanBeBsonElement]] implicits and any [[BsonTransformer]]s that 
   *                are in scope. 
   * @return        a new Document consisting key/value pairs given by `elems`. 
   */ 
  def apply(elems: CanBeBsonElement*): Document = { 
    val underlying = new BsonDocument() 
    elems.foreach(elem => underlying.put(elem.key, elem.value)) 
    new Document(underlying) 
  }

Document可以通过CanbeBsonElement构建。CanbeBsonElement是一种key/value结构:

 /** 
   * Represents a single [[BsonElement]] 
   * 
   * This is essentially a `(String, BsonValue)` key value pair. Any pair of `(String, T)` where type `T` has a [[BsonTransformer]] in 
   * scope into a [[BsonValue]] is also a valid pair. 
   */ 
  sealed trait CanBeBsonElement { 
    val bsonElement: BsonElement 
 
    /** 
     * The key of the [[BsonElement]] 
     * @return the key 
     */ 
    def key: String = bsonElement.getName 
 
    /** 
     * The value of the [[BsonElement]] 
     * @return the BsonValue 
     */ 
    def value: BsonValue = bsonElement.getValue 
  } 
 
  /** 
   * Implicitly converts key/value tuple of type (String, T) into a `CanBeBsonElement` 
   * 
   * @param kv the key value pair 
   * @param transformer the implicit [[BsonTransformer]] for the value 
   * @tparam T the type of the value 
   * @return a CanBeBsonElement representing the key/value pair 
   */ 
  implicit def tupleToCanBeBsonElement[T](kv: (String, T))(implicit transformer: BsonTransformer[T]): CanBeBsonElement = { 
    new CanBeBsonElement { 
      override val bsonElement: BsonElement = BsonElement(kv._1, transformer(kv._2)) 
    } 
  }

有了上面这个tupleToCanBeBsonElement隐式转换函数就可以用下面的方式构建Document了: 

  val doc: Document = Document("_id" -> 0, "name" -> "MongoDB", "type" -> "database", 
    "count" -> 1, "info" -> Document("x" -> 203, "y" -> 102))

这种key/value关系对应了一般数据库表中的字段名称/字段值。下面我们尝试建两个不同格式的Document并把它们加入到同一个collection里:

  val alice = Document("_id" -> 1, "name" -> "alice wong", "age" -> 24) 
  val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable") 
 
  val addAlice: Observable[Completed] = userCollection.insertOne(alice) 
  val addTiger: Observable[Completed] = userCollection.insertOne(tiger)

上面这个例子证明了MongoDB的no-schema特性。用insert方法加入数据返回结果是个Obervable类型。这个类型与Future很像:只是一种运算的描述,必须通过subscribe方法来实际运算获取结果:

   addAlice.subscribe(new Observer[Completed] { 
    override def onComplete(): Unit = println("insert alice completed.") 
    override def onNext(result: Completed): Unit = println("insert alice sucessful.") 
    override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}") 
  })

又或者转成Future后用Future方法如Await来运算:

  def headResult(observable: Observable[Completed]) = Await.result(observable.head(), 2 seconds) 
  val r1 = headResult(addTiger)

Mongo-Scala提供了Observable到Future的转换函数:

   /** 
     * Collects the [[Observable]] results and converts to a [[scala.concurrent.Future]]. 
     * 
     * Automatically subscribes to the `Observable` and uses the [[collect]] method to aggregate the results. 
     * 
     * @note If the Observable is large then this will consume lots of memory! 
     *       If the underlying Observable is infinite this Observable will never complete. 
     * @return a future representation of the whole Observable 
     */ 
    def toFuture(): Future[Seq[T]] = { 
      val promise = Promise[Seq[T]]() 
      collect().subscribe((l: Seq[T]) => promise.success(l), (t: Throwable) => promise.failure(t)) 
      promise.future 
    } 
 
    /** 
     * Returns the head of the [[Observable]] in a [[scala.concurrent.Future]]. 
     * 
     * @return the head result of the [[Observable]]. 
     */ 
    def head(): Future[T] = { 
      import scala.concurrent.ExecutionContext.Implicits.global 
      headOption().map { 
        case Some(result) => result 
        case None         => null.asInstanceOf[T] // scalastyle:ignore null 
      } 
    }

也可以用insertMany来成批加入:

  val peter = Document("_id" -> 3, "first" -> "peter", "age" -> "old") 
  val chan = Document("last" -> "chan", "family" -> "chan's") 
  val addMany = userCollection.insertMany(List(peter,chan)) 
  val r2 = headResult(addMany)

现在我们可以用count得出usersCollection中Document数量和用find把所有Document都印出来:

  userCollection.count.head.onComplete { 
    case Success(c) => println(s"$c documents in users collection") 
    case Failure(e) => println(s"count() error: ${e.getMessage}") 
  } 
  userCollection.find().toFuture().onComplete { 
    case Success(users) => users.foreach(println) 
    case Failure(e) => println(s"find error: ${e.getMessage}") 
  } 
  scala.io.StdIn.readLine()

显示结果:

insert alice sucessful. 
insert alice completed. 
4 documents in users collection 
Document((_id,BsonInt32{value=1}), (name,BsonString{value='alice wong'}), (age,BsonInt32{value=24})) 
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437602}), (first,BsonString{value='tiger'}), (last,BsonString{value='chan'}), (name,BsonString{value='tiger chan'}), (age,BsonString{value='unavailable'})) 
Document((_id,BsonInt32{value=3}), (first,BsonString{value='peter'}), (age,BsonString{value='old'})) 
Document((_id,BsonObjectId{value=5a96641aa83f2923ab437603}), (last,BsonString{value='chan'}), (family,BsonString{value='chan's'}))

这个BsonString很碍眼,用隐式转换来把它转成String:

object Helpers { 
 
  implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] { 
    override val converter: (Document) => String = (doc) => doc.toJson 
  } 
 
  implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] { 
    override val converter: (C) => String = (doc) => doc.toString 
  } 
 
  trait ImplicitObservable[C] { 
    val observable: Observable[C] 
    val converter: (C) => String 
 
    def results(): Seq[C] = Await.result(observable.toFuture(), 10 seconds) 
    def headResult() = Await.result(observable.head(), 10 seconds) 
    def printResults(initial: String = ""): Unit = { 
      if (initial.length > 0) print(initial) 
      results().foreach(res => println(converter(res))) 
    } 
    def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}") 
  } 
 
}

现在再列印:

  userCollection.find().printResults("all documents:") 
 
all documents:{ "_id" : 1, "name" : "alice wong", "age" : 24 } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" } 
{ "_id" : 3, "first" : "peter", "age" : "old" } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" }

现在可读性强多了。find()无条件选出所有Document。MongoDB-Scala通过Filters对象提供了完整的查询条件构建函数如equal:

 /** 
   * Creates a filter that matches all documents where the value of the field name equals the specified value. Note that this does 
   * actually generate a `/$eq` operator, as the query language doesn't require it. 
   * 
   * A friendly alias for the `eq` method. 
   * 
   * @param fieldName the field name 
   * @param value     the value 
   * @tparam TItem  the value type 
   * @return the filter 
   * @see [[http://docs.mongodb.org/manual/reference/operator/query/eq /$eq]] 
   */ 
  def equal[TItem](fieldName: String, value: TItem): Bson = eq(fieldName, value)

equal返回Bson,我们也可以把多个Bson组合起来形成一个更复杂的查询条件:

userCollection.find(and(gte("age",24),exists("name",true)))

好了,现在我们可以测试各种查询条件了:

  userCollection.find(notEqual("_id",3)).printResults("id != 3:") 
  userCollection.find(equal("last", "chan")).printResults("last = chan:") 
  userCollection.find(and(gte("age",24),exists("name",true))).printResults("age >= 24") 
  userCollection.find(or(gte("age",24),equal("first","tiger"))).printResults("first = tiger")

显示结果:

id != 3:{ "_id" : 1, "name" : "alice wong", "age" : 24 } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" } 
last = chan:{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd3" }, "last" : "chan", "family" : "chan's" } 
age >= 24{ "_id" : 1, "name" : "alice wong", "age" : 24 } 
first = tiger{ "_id" : 1, "name" : "alice wong", "age" : 24 } 
{ "_id" : { "$oid" : "5a9665cea83f29243ccacbd2" }, "first" : "tiger", "last" : "chan", "name" : "tiger chan", "age" : "unavailable" }

下面是本次示范的源代码:

build.sbt

name := "learn-mongo" 
 
version := "0.1" 
 
scalaVersion := "2.12.4" 
 
libraryDependencies := Seq( 
    "org.mongodb.scala" %% "mongo-scala-driver" % "2.2.1", 
    "com.lightbend.akka" %% "akka-stream-alpakka-mongodb" % "0.17" 
)

MongoScala101.scala

import org.mongodb.scala._ 
import scala.collection.JavaConverters._ 
import org.mongodb.scala.connection.ClusterSettings 
import scala.concurrent._ 
import scala.concurrent.duration._ 
import scala.util._ 
import org.mongodb.scala.model.Filters._ 
object MongoScala101 extends App { 
import scala.concurrent.ExecutionContext.Implicits.global 
//  val client1 = MongoClient() 
//  val client2 = MongoClient("mongodb://localhost:27017") 
 
val clusterSettings = ClusterSettings.builder() 
.hosts(List(new ServerAddress("localhost:27017")).asJava).build() 
val clientSettings = MongoClientSettings.builder().clusterSettings(clusterSettings).build() 
val client = MongoClient(clientSettings) 
val db: MongoDatabase = client.getDatabase("testdb") 
val userCollection: MongoCollection[Document] = db.getCollection("users") 
val deleteAll = userCollection.deleteMany(notEqual("_id", 3)) 
deleteAll.head.onComplete { 
case Success(c) => println(s"delete sucessful $c") 
case Failure(e) => println(s"delete error: ${e.getMessage}") 
} 
scala.io.StdIn.readLine() 
val delete3 = userCollection.deleteMany(equal("_id", 3)) 
delete3.head.onComplete { 
case Success(c) => println(s"delete sucessful $c") 
case Failure(e) => println(s"delete error: ${e.getMessage}") 
} 
scala.io.StdIn.readLine() 
val doc: Document = Document("_id" -> 0, "name" -> "MongoDB", "type" -> "database", 
"count" -> 1, "info" -> Document("x" -> 203, "y" -> 102)) 
val alice = Document("_id" -> 1, "name" -> "alice wong", "age" -> 24) 
val tiger = Document("first" -> "tiger", "last" -> "chan", "name" -> "tiger chan", "age" -> "unavailable") 
val addAlice: Observable[Completed] = userCollection.insertOne(alice) 
val addTiger: Observable[Completed] = userCollection.insertOne(tiger) 
addAlice.subscribe(new Observer[Completed] { 
override def onComplete(): Unit = println("insert alice completed.") 
override def onNext(result: Completed): Unit = println("insert alice sucessful.") 
override def onError(e: Throwable): Unit = println(s"insert error: ${e.getMessage}") 
}) 
def headResult(observable: Observable[Completed]) = Await.result(observable.head(), 2 seconds) 
val r1 = headResult(addTiger) 
val peter = Document("_id" -> 3, "first" -> "peter", "age" -> "old") 
val chan = Document("last" -> "chan", "family" -> "chan's") 
val addMany = userCollection.insertMany(List(peter,chan)) 
val r2 = headResult(addMany) 
import Helpers._ 
userCollection.count.head.onComplete { 
case Success(c) => println(s"$c documents in users collection") 
case Failure(e) => println(s"count() error: ${e.getMessage}") 
} 
userCollection.find().toFuture().onComplete { 
case Success(users) => users.foreach(println) 
case Failure(e) => println(s"find error: ${e.getMessage}") 
} 
scala.io.StdIn.readLine() 
userCollection.find().printResults("all documents:") 
userCollection.find(notEqual("_id",3)).printResults("id != 3:") 
userCollection.find(equal("last", "chan")).printResults("last = chan:") 
userCollection.find(and(gte("age",24),exists("name",true))).printResults("age >= 24") 
userCollection.find(or(gte("age",24),equal("first","tiger"))).printResults("first = tiger") 
client.close() 
println("end!!!") 
} 
object Helpers { 
implicit class DocumentObservable[C](val observable: Observable[Document]) extends ImplicitObservable[Document] { 
override val converter: (Document) => String = (doc) => doc.toJson 
} 
implicit class GenericObservable[C](val observable: Observable[C]) extends ImplicitObservable[C] { 
override val converter: (C) => String = (doc) => doc.toString 
} 
trait ImplicitObservable[C] { 
val observable: Observable[C] 
val converter: (C) => String 
def results(): Seq[C] = Await.result(observable.toFuture(), 10 seconds) 
def headResult() = Await.result(observable.head(), 10 seconds) 
def printResults(initial: String = ""): Unit = { 
if (initial.length > 0) print(initial) 
results().foreach(res => println(converter(res))) 
} 
def printHeadResult(initial: String = ""): Unit = println(s"${initial}${converter(headResult())}") 
} 
}

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/12809.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论