Akka(25): Stream:对接外部系统-Integration详解编程语言

   在现实应用中akka-stream往往需要集成其它的外部系统形成完整的应用。这些外部系统可能是akka系列系统或者其它类型的系统。所以,akka-stream必须提供一些函数和方法来实现与各种不同类型系统的信息交换。在这篇讨论里我们就介绍几种通用的信息交换方法和函数。

   akka-stream提供了mapAsync+ask模式可以从一个运算中的数据流向外连接某个Actor来进行数据交换。这是一种akka-stream与Actor集成的应用。说到与Actor集成,联想到如果能把akka-stream中复杂又消耗资源的运算任务交付给Actor,那么我们就可以充分利用actor模式的routing,cluster,supervison等等特殊功能来实现分布式高效安全的运算。下面就是这个mapAsync函数定义:

  /** 
   * Transform this stream by applying the given function to each of the elements 
   * as they pass through this processing step. The function returns a `Future` and the 
   * value of that future will be emitted downstream. The number of Futures 
   * that shall run in parallel is given as the first argument to ``mapAsync``. 
   * These Futures may complete in any order, but the elements that 
   * are emitted downstream are in the same order as received from upstream. 
   * 
   * If the function `f` throws an exception or if the `Future` is completed 
   * with failure and the supervision decision is [[akka.stream.Supervision.Stop]] 
   * the stream will be completed with failure. 
   * 
   * If the function `f` throws an exception or if the `Future` is completed 
   * with failure and the supervision decision is [[akka.stream.Supervision.Resume]] or 
   * [[akka.stream.Supervision.Restart]] the element is dropped and the stream continues. 
   * 
   * The function `f` is always invoked on the elements in the order they arrive. 
   * 
   * Adheres to the [[ActorAttributes.SupervisionStrategy]] attribute. 
   * 
   * '''Emits when''' the Future returned by the provided function finishes for the next element in sequence 
   * 
   * '''Backpressures when''' the number of futures reaches the configured parallelism and the downstream 
   * backpressures or the first future is not completed 
   * 
   * '''Completes when''' upstream completes and all futures have been completed and all elements have been emitted 
   * 
   * '''Cancels when''' downstream cancels 
   * 
   * @see [[#mapAsyncUnordered]] 
   */ 
  def mapAsync[T](parallelism: Int)(f: Out ⇒ Future[T]): Repr[T] = via(MapAsync(parallelism, f))

mapAsync把一个函数f: Out=>Future[T]在parallelism个Future里并行运算。我们来看看ask的款式:

  def ?(message: Any)(implicit timeout: Timeout, sender: ActorRef = Actor.noSender): Future[Any] = 
    internalAsk(message, timeout, sender)

刚好是 T=>Future[T]这样的款式。所以我们可以用下面这种方式从Stream里与Actor沟通:

  stream.mapAsync(parallelism = 5)(elem => (ref ? elem).mapTo[String])

在以上的用例里Stream的每一个元素都通过ref ? elem发送给了ActorRef在一个Future里运算,这个Actor完成运算后返回Future[String]类型结果。值得注意的是mapAsync通过这个返回的Future来实现stream backpressure,也就是说这个运算Actor必须返回结果,否则Stream就会挂在那里了。下面我们先示范一下mapAsync的直接应用:

import akka.actor._ 
import akka.pattern._ 
import akka.stream._ 
import akka.stream.scaladsl._ 
import akka.routing._ 
 
import scala.concurrent.duration._ 
import akka.util.Timeout 
 
object StorageActor { 
 
  case class Query(rec: Int, qry: String) //模拟数据存写Query 
 
  class StorageActor extends Actor with ActorLogging { //模拟存写操作Actor 
    override def receive: Receive = { 
      case Query(num,qry) => 
        val reply = s"${self.path} is saving: [$qry]" 
        sender() ! reply                  //必须回复mapAsync, 抵消backpressure 
        reply 
    } 
  } 
  def props = Props(new StorageActor) 
} 
 
object MapAsyncDemo extends App { 
  implicit val sys = ActorSystem("demoSys") 
  implicit val ec = sys.dispatcher 
  implicit val mat = ActorMaterializer( 
    ActorMaterializerSettings(sys) 
      .withInputBuffer(initialSize = 16, maxSize = 16) 
  ) 
  val storageActor = sys.actorOf(StorageActor.props,"dbWriter") 
 
 
  implicit val timeout = Timeout(3 seconds) 
  Source(Stream.from(1)).delay(1.second,DelayOverflowStrategy.backpressure) 
    .mapAsync(parallelism = 3){ n => 
      (storageActor ? StorageActor.Query(n,s"Record#$n")).mapTo[String] 
    }.runWith(Sink.foreach(println)) 
 
  scala.io.StdIn.readLine() 
  sys.terminate() 
 
}

 在这个例子里parallelism=3,我们在StorageActor里把当前运算中的实例返回并显示出来:

akka://demoSys/user/dbWriter is saving: [Record#1] 
akka://demoSys/user/dbWriter is saving: [Record#2] 
akka://demoSys/user/dbWriter is saving: [Record#3] 
akka://demoSys/user/dbWriter is saving: [Record#4] 
akka://demoSys/user/dbWriter is saving: [Record#5] 
akka://demoSys/user/dbWriter is saving: [Record#6] 
...

可以看到:mapAsync只调用了一个Actor。那么所谓的并行运算parallelism=3的意思就只能代表在多个Future线程中同时运算了。为了实现对Actor模式特点的充分利用,我们可以通过router来实现在多个actor上并行运算。Router分pool和group两种类型:pool类router自己构建routees,group类型则调用已经构建的Actor。在我们这次的测试里只能使用group类型的Router,因为如果需要对routee实现监管supervision的话,pool类型的router在routee终止时会自动补充构建新的routee,如此就避开了监管策略。首先增加StorageActor的routing功能:

  val numOfActors = 3 
  val routees: List[ActorRef] = List.fill(numOfActors)(      //构建3个StorageActor 
    sys.actorOf(StorageActor.props)) 
  val routeePaths: List[String] = routees.map{ref => "/user/"+ref.path.name} 
 
  val storageActorPool = sys.actorOf( 
    RoundRobinGroup(routeePaths).props() 
      .withDispatcher("akka.pool-dispatcher") 
    ,"starageActorPool" 
  ) 
 
  implicit val timeout = Timeout(3 seconds) 
  Source(Stream.from(1)).delay(1.second,DelayOverflowStrategy.backpressure) 
    .mapAsync(parallelism = 1){ n => 
      (storageActorPool ? StorageActor.Query(n,s"Record#$n")).mapTo[String] 
    }.runWith(Sink.foreach(println))

我们使用了RoundRobinGroup作为智能任务分配方式。注意上面的parallelism=1:现在不需要多个Future了。再看看运行的结果显示:

akka://demoSys/user/$a is saving: [Record#1] 
akka://demoSys/user/$b is saving: [Record#2] 
akka://demoSys/user/$c is saving: [Record#3] 
akka://demoSys/user/$a is saving: [Record#4] 
akka://demoSys/user/$b is saving: [Record#5] 
akka://demoSys/user/$c is saving: [Record#6] 
akka://demoSys/user/$a is saving: [Record#7]

可以看到现在运算任务是在a,b,c三个Actor上并行运算的。既然是模拟数据库的并行存写动作,我们可以试着为每个routee增加逐步延时重启策略BackOffSupervisor:

object StorageActor { 
case class Query(rec: Int, qry: String) //模拟数据存写Query 
class DbException(cause: String) extends Exception(cause) //自定义存写异常 
class StorageActor extends Actor with ActorLogging { //存写操作Actor 
override def receive: Receive = { 
case Query(num,qry) => 
var res: String = "" 
try { 
res = saveToDB(num,qry) 
} catch { 
case e: Exception => Error(num,qry) //模拟操作异常 
        } 
sender() ! res 
case _ => 
} 
def saveToDB(num: Int,qry: String): String = { //模拟存写函数 
val msg = s"${self.path} is saving: [$qry#$num]" 
if ( num % 3 == 0) Error(num,qry)        //模拟异常 
else { 
log.info(s"${self.path} is saving: [$qry#$num]") 
s"${self.path} is saving: [$qry#$num]" 
} 
} 
def Error(num: Int,qry: String): String = { 
val msg = s"${self.path} is saving: [$qry#$num]" 
sender() ! msg 
throw new DbException(s"$msg blew up, boooooom!!!") 
} 
//验证异常重启 
//BackoffStrategy.onStop goes through restart process 
override def preRestart(reason: Throwable, message: Option[Any]): Unit = { 
log.info(s"Restarting ${self.path.name} on ${reason.getMessage}") 
super.preRestart(reason, message) 
} 
override def postRestart(reason: Throwable): Unit = { 
log.info(s"Restarted ${self.path.name} on ${reason.getMessage}") 
super.postRestart(reason) 
} 
override def postStop(): Unit = { 
log.info(s"Stopped ${self.path.name}!") 
super.postStop() 
} 
//BackOffStrategy.onFailure dosn't go through restart process 
override def preStart(): Unit = { 
log.info(s"PreStarting ${self.path.name} ...") 
super.preStart() 
} 
} 
def props = Props(new StorageActor) 
} 
object StorageActorGuardian {  //带监管策略的StorageActor 
def props: Props = { //在这里定义了监管策略和StorageActor构建 
def decider: PartialFunction[Throwable, SupervisorStrategy.Directive] = { 
case _: StorageActor.DbException => SupervisorStrategy.Restart 
} 
val options = Backoff.onStop(StorageActor.props, "dbWriter", 100 millis, 500 millis, 0.0) 
.withManualReset 
.withSupervisorStrategy( 
OneForOneStrategy(maxNrOfRetries = 3, withinTimeRange = 1 second)( 
decider.orElse(SupervisorStrategy.defaultDecider) 
) 
) 
BackoffSupervisor.props(options) 
} 
} 
object IntegrateDemo extends App { 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val numOfActors = 3 
val routees: List[ActorRef] = List.fill(numOfActors)( 
sys.actorOf(StorageActorGuardian.props)) 
val routeePaths: List[String] = routees.map{ref => "/user/"+ref.path.name} //获取ActorPath 
 
val storageActorPool = sys.actorOf( 
RoundRobinGroup(routeePaths).props() 
.withDispatcher("akka.pool-dispatcher") 
,"starageActorPool" 
) 
implicit val timeout = Timeout(3 seconds) 
Source(Stream.from(1)).delay(3.second,DelayOverflowStrategy.backpressure) 
.mapAsync(parallelism = 1){ n => 
(storageActorPool ? StorageActor.Query(n,s"Record")).mapTo[String] 
}.runWith(Sink.foreach(println)) 
scala.io.StdIn.readLine() 
sys.terminate() 
}

我们同时增加了模拟异常发生、StorageActor生命周期callback来跟踪异常发生时SupervisorStrategy.Restart的执行情况。从试运行反馈结果证实Backoff.onFailure不会促发Restart事件,而是直接促发了preStart事件。Backoff.onStop则走Restart过程。Backoff.onFailure是在Actor出现异常终止触动的,而Backoff.onStop则是目标Actor在任何情况下终止后触发。值得注意的是,在以上例子里运算Actor会越过造成异常的这个流元素,所以我们必须在preRestart里把这个元素补发给自己:

   //验证异常重启 
//BackoffStrategy.onStop goes through restart process 
override def preRestart(reason: Throwable, message: Option[Any]): Unit = { 
log.info(s"Restarting ${self.path.name} on ${reason.getMessage}") 
message match { 
case Some(Query(n,qry)) => 
self ! Query(n+101,qry)      //把异常消息再补发送给自己,n+101更正了异常因素 
case _ => 
log.info(s"Exception message: None") 
} 
super.preRestart(reason, message) 
}

如果我们不需要委托给Actor运算任务的返回结果,可以尝试用Sink.actorRefWithAck:

 /** 
* Sends the elements of the stream to the given `ActorRef` that sends back back-pressure signal. 
* First element is always `onInitMessage`, then stream is waiting for acknowledgement message 
* `ackMessage` from the given actor which means that it is ready to process 
* elements. It also requires `ackMessage` message after each stream element 
* to make backpressure work. 
* 
* If the target actor terminates the stream will be canceled. 
* When the stream is completed successfully the given `onCompleteMessage` 
* will be sent to the destination actor. 
* When the stream is completed with failure - result of `onFailureMessage(throwable)` 
* function will be sent to the destination actor. 
*/ 
def actorRefWithAck[T](ref: ActorRef, onInitMessage: Any, ackMessage: Any, onCompleteMessage: Any, 
onFailureMessage: (Throwable) ⇒ Any = Status.Failure): Sink[T, NotUsed] = 
Sink.fromGraph(new ActorRefBackpressureSinkStage(ref, onInitMessage, ackMessage, onCompleteMessage, onFailureMessage))

在这里ActorRef只能返回有关backpressure状态信号。actorRefWithAck自己则返回Sink[T,NotUsed],也就是说它构建了一个Sink。actorRefWithAck使用三种信号来与目标Actor沟通:

1、onInitMessage:stream发送给ActorRef的第一个信号,表示可以开始数据交换

2、ackMessage:ActorRef向stream发出的信号,回复自身准备完毕,可以接收消息,也是一种backpressure卸除消息

3、onCompleteMessage:stream发给ActorRef,通知stream已经完成了所有流元素发送

我们必须修改上个例子中的StorageActor来符合actorRefWithAck的应用和与目标Actor的沟通:

object StorageActor { 
val onInitMessage = "start" 
val onCompleteMessage = "done" 
val ackMessage = "ack" 
case class Query(rec: Int, qry: String) //模拟数据存写Query 
class DbException(cause: String) extends Exception(cause) //自定义存写异常 
class StorageActor extends Actor with ActorLogging { //存写操作Actor 
override def receive: Receive = { 
case `onInitMessage` => sender() ! ackMessage 
case Query(num,qry) => 
var res: String = "" 
try { 
res = saveToDB(num,qry) 
} catch { 
case e: Exception => Error(num,qry) //模拟操作异常 
        } 
sender() ! ackMessage 
case `onCompleteMessage` => //clean up resources 释放资源 
case _ => 
} 
def saveToDB(num: Int,qry: String): String = { //模拟存写函数 
val msg = s"${self.path} is saving: [$qry#$num]" 
if ( num % 5 == 0) Error(num,qry)        //模拟异常 
else { 
log.info(s"${self.path} is saving: [$qry#$num]") 
s"${self.path} is saving: [$qry#$num]" 
} 
} 
def Error(num: Int,qry: String) = { 
val msg = s"${self.path} is saving: [$qry#$num]" 
sender() ! ackMessage 
throw new DbException(s"$msg blew up, boooooom!!!") 
} 
//验证异常重启 
//BackoffStrategy.onStop goes through restart process 
override def preRestart(reason: Throwable, message: Option[Any]): Unit = { 
log.info(s"Restarting ${self.path.name} on ${reason.getMessage}") 
message match { 
case Some(Query(n,qry)) => 
self ! Query(n+101,qry)      //把异常消息再补发送给自己,n+101更正了异常因素 
case _ => 
log.info(s"Exception message: None") 
} 
super.preRestart(reason, message) 
} 
override def postRestart(reason: Throwable): Unit = { 
log.info(s"Restarted ${self.path.name} on ${reason.getMessage}") 
super.postRestart(reason) 
} 
override def postStop(): Unit = { 
log.info(s"Stopped ${self.path.name}!") 
super.postStop() 
} 
//BackOffStrategy.onFailure dosn't go through restart process 
override def preStart(): Unit = { 
log.info(s"PreStarting ${self.path.name} ...") 
super.preStart() 
} 
} 
def props = Props(new StorageActor) 
}

StorageActor类里包括了对actorRefWithAck沟通消息onInitMessage、ackMessage、onCompleteMessage的处理。这个Actor只返回backpressure消息ackMessage,而不是返回任何运算结果。注意,在preRestart里我们把造成异常的元素处理后再补发给了自己。Sink.actorRefWithAck的调用方式如下: 

  Source(Stream.from(1)).map(n => Query(n,s"Record")).delay(3.second,DelayOverflowStrategy.backpressure) 
.runWith(Sink.actorRefWithAck( 
storageActorPool, onInitMessage, ackMessage,onCompleteMessage))

完整的运行环境源代码如下:

object SinkActorRefWithAck extends App { 
import StorageActor._ 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val storageActor = sys.actorOf(StorageActor.props,"storageActor") 
val numOfActors = 3 
val routees: List[ActorRef] = List.fill(numOfActors)( 
sys.actorOf(StorageActorGuardian.props)) 
val routeePaths: List[String] = routees.map{ref => "/user/"+ref.path.name} 
val storageActorPool = sys.actorOf( 
RoundRobinGroup(routeePaths).props() 
.withDispatcher("akka.pool-dispatcher") 
,"starageActorPool" 
) 
Source(Stream.from(1)).map(n => Query(n,s"Record")).delay(3.second,DelayOverflowStrategy.backpressure) 
.runWith(Sink.actorRefWithAck( 
storageActorPool, onInitMessage, ackMessage,onCompleteMessage)) 
scala.io.StdIn.readLine() 
sys.terminate() 
}

如果一个外部系统向一个数据流提供数据,那我们可以把这个外部系统当作数据流的源头Source。akka-stream提供了个Source.queque函数来构建一种Source,外部系统可以利用这个Source来向Stream发送数据。Source.queque的函数款式如下:

  /** 
* Creates a `Source` that is materialized as an [[akka.stream.scaladsl.SourceQueue]]. 
* You can push elements to the queue and they will be emitted to the stream if there is demand from downstream, 
* otherwise they will be buffered until request for demand is received. Elements in the buffer will be discarded 
* if downstream is terminated. 
* 
* Depending on the defined [[akka.stream.OverflowStrategy]] it might drop elements if 
* there is no space available in the buffer. 
* 
* Acknowledgement mechanism is available. 
* [[akka.stream.scaladsl.SourceQueue.offer]] returns `Future[QueueOfferResult]` which completes with 
* `QueueOfferResult.Enqueued` if element was added to buffer or sent downstream. It completes with 
* `QueueOfferResult.Dropped` if element was dropped. Can also complete  with `QueueOfferResult.Failure` - 
* when stream failed or `QueueOfferResult.QueueClosed` when downstream is completed. 
* 
* The strategy [[akka.stream.OverflowStrategy.backpressure]] will not complete last `offer():Future` 
* call when buffer is full. 
* 
* You can watch accessibility of stream with [[akka.stream.scaladsl.SourceQueue.watchCompletion]]. 
* It returns future that completes with success when stream is completed or fail when stream is failed. 
* 
* The buffer can be disabled by using `bufferSize` of 0 and then received message will wait 
* for downstream demand unless there is another message waiting for downstream demand, in that case 
* offer result will be completed according to the overflow strategy. 
* 
* @param bufferSize size of buffer in element count 
* @param overflowStrategy Strategy that is used when incoming elements cannot fit inside the buffer 
*/ 
def queue[T](bufferSize: Int, overflowStrategy: OverflowStrategy): Source[T, SourceQueueWithComplete[T]] = 
Source.fromGraph(new QueueSource(bufferSize, overflowStrategy).withAttributes(DefaultAttributes.queueSource))

Source.queue构建了一个Source:Source[T,SourceQueueWithComplete[T]],SourceQueueWithComplete类型如下:

/** 
* This trait adds completion support to [[SourceQueue]]. 
*/ 
trait SourceQueueWithComplete[T] extends SourceQueue[T] { 
/** 
* Complete the stream normally. Use `watchCompletion` to be notified of this 
* operation’s success. 
*/ 
def complete(): Unit 
/** 
* Complete the stream with a failure. Use `watchCompletion` to be notified of this 
* operation’s success. 
*/ 
def fail(ex: Throwable): Unit 
/** 
* Method returns a [[Future]] that will be completed if the stream completes, 
* or will be failed when the stage faces an internal failure or the the [[SourceQueueWithComplete.fail]] method is invoked. 
*/ 
def watchCompletion(): Future[Done] 
}

它在SourceQueue的基础上增加了几个抽象函数,主要用来向目标数据流发送终止信号包括:complete,fail。watchCompletion是一种监视函数,返回Future代表SourceQueue被手工终止或stream由于某些原因终止运算。下面是SourceQueue定义:

/** 
* This trait allows to have the queue as a data source for some stream. 
*/ 
trait SourceQueue[T] { 
/** 
* Method offers next element to a stream and returns future that: 
* - completes with `Enqueued` if element is consumed by a stream 
* - completes with `Dropped` when stream dropped offered element 
* - completes with `QueueClosed` when stream is completed during future is active 
* - completes with `Failure(f)` when failure to enqueue element from upstream 
* - fails when stream is completed or you cannot call offer in this moment because of implementation rules 
* (like for backpressure mode and full buffer you need to wait for last offer call Future completion) 
* 
* @param elem element to send to a stream 
*/ 
def offer(elem: T): Future[QueueOfferResult] 
/** 
* Method returns a [[Future]] that will be completed if the stream completes, 
* or will be failed when the stage faces an internal failure. 
*/ 
def watchCompletion(): Future[Done] 
}

这个界面支持了SourceQueue的基本操作:offer(elem: T), watchComplete()两个函数。下面我们就用个例子来示范SourceQueue的使用方法:我们用Calculator actor来模拟外部系统、先用Source.queue构建一个SourceQueue然后再连接下游形成一个完整的数据流。把这个数据流传给Calculator,这样Calculator就可以向这个运行中的Stream发送数据了。我们会通过这个过程来示范SourceQueue的基本操作。下面这个Calculator Actor模拟了一个外部系统作为SourceQueue用户:

object Calculator { 
trait Operations 
case class Add(op1:Int, op2:Int) extends Operations 
case class DisplayError(err: Exception) extends Operations 
case object Stop extends Operations 
case class ProduceError(err: Exception) extends Operations 
def props(inputQueue: SourceQueueWithComplete[String]) = Props(new Calculator(inputQueue)) 
} 
class Calculator(inputQueue: SourceQueueWithComplete[String]) extends Actor with ActorLogging{ 
import Calculator._ 
import context.dispatcher 
override def receive: Receive = { 
case Add(op1,op2) => 
val msg = s"$op1 + $op2 = ${op1 + op2}" 
inputQueue.offer(msg)    //.mapTo[String] 
        .recover { 
case e: Exception => DisplayError(e)} 
.pipeTo(self) 
case QueueOfferResult.Enqueued => 
log.info("QueueOfferResult.Enqueued") 
case QueueOfferResult.Dropped => 
case QueueOfferResult.Failure(cause) => 
case QueueOfferResult.QueueClosed  => 
log.info("QueueOfferResult.QueueClosed") 
case Stop => inputQueue.complete() 
case ProduceError(e) => inputQueue.fail(e) 
} 
}

我们看到,Calculator通过传入的inputQueue把计算结果传给数据流显示出来。在receive函数里我们把offer用法以及它可能产生的返回结果通过pipeTo都做了示范。注意:不能使用mapTo[String],因为offer返回Future[T],T不是String,会造成类型转换错误。而我们已经在Source.queue[String]注明了offer(elem) elem的类型是String。inputQueue的构建方式如下:

  val source: Source[String, SourceQueueWithComplete[String]]  = 
Source.queue[String](bufferSize = 16, 
overflowStrategy = OverflowStrategy.backpressure) 
val inputQueue: SourceQueueWithComplete[String] = source.toMat(Sink.foreach(println))(Keep.left).run() 
inputQueue.watchCompletion().onComplete { 
case Success(result) => println(s"Calculator ends with: $result") 
case Failure(cause)  => println(s"Calculator ends with exception: ${cause.getMessage}") 
}

增加了watchCompetion来监测SourceQueue发出的终止信号。我们还可以看到:以上SoureQueue实例source是支持backpressure的。下面是这个例子的具体运算方式:

object SourceQueueDemo extends App { 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val source: Source[String, SourceQueueWithComplete[String]]  = 
Source.queue[String](bufferSize = 16, 
overflowStrategy = OverflowStrategy.backpressure) 
val inputQueue: SourceQueueWithComplete[String] = source.toMat(Sink.foreach(println))(Keep.left).run() 
inputQueue.watchCompletion().onComplete { 
case Success(result) => println(s"Calculator ends with: $result") 
case Failure(cause)  => println(s"Calculator ends with exception: ${cause.getMessage}") 
} 
val calc = sys.actorOf(Calculator.props(inputQueue),"calculator") 
import Calculator._ 
calc ! Add(3,5) 
scala.io.StdIn.readLine 
calc ! Add(39,1) 
scala.io.StdIn.readLine 
calc ! ProduceError(new Exception("Boooooommm!")) 
scala.io.StdIn.readLine 
calc ! Add(1,1) 
scala.io.StdIn.readLine 
sys.terminate() 
}

在本次讨论里我们了解了akka-stream与外界系统对接集成的一些情况。主要介绍了一些支持Reactive-Stream backpressure的方法。

以下是本次示范的全部源代码:

MapAsyncDemo.scala:

import akka.actor._ 
import akka.pattern._ 
import akka.stream._ 
import akka.stream.scaladsl._ 
import akka.routing._ 
import scala.concurrent.duration._ 
import akka.util.Timeout 
object StorageActor { 
case class Query(rec: Int, qry: String) //模拟数据存写Query 
class DbException(cause: String) extends Exception(cause) //自定义存写异常 
class StorageActor extends Actor with ActorLogging { //存写操作Actor 
override def receive: Receive = { 
case Query(num,qry) => 
var res: String = "" 
try { 
res = saveToDB(num,qry) 
} catch { 
case e: Exception => Error(num,qry) //模拟操作异常 
        } 
sender() ! res 
case _ => 
} 
def saveToDB(num: Int,qry: String): String = { //模拟存写函数 
val msg = s"${self.path} is saving: [$qry#$num]" 
if ( num % 5 == 0) Error(num,qry)        //模拟异常 
else { 
log.info(s"${self.path} is saving: [$qry#$num]") 
s"${self.path} is saving: [$qry#$num]" 
} 
} 
def Error(num: Int,qry: String): String = { 
val msg = s"${self.path} is saving: [$qry#$num]" 
sender() ! msg                       //卸去backpressure 
throw new DbException(s"$msg blew up, boooooom!!!") 
} 
//验证异常重启 
//BackoffStrategy.onStop goes through restart process 
override def preRestart(reason: Throwable, message: Option[Any]): Unit = { 
log.info(s"Restarting ${self.path.name} on ${reason.getMessage}") 
message match { 
case Some(Query(n,qry)) => 
self ! Query(n+101,qry)      //把异常消息再补发送给自己,n+101更正了异常因素 
case _ => 
log.info(s"Exception message: None") 
} 
super.preRestart(reason, message) 
} 
override def postRestart(reason: Throwable): Unit = { 
log.info(s"Restarted ${self.path.name} on ${reason.getMessage}") 
super.postRestart(reason) 
} 
override def postStop(): Unit = { 
log.info(s"Stopped ${self.path.name}!") 
super.postStop() 
} 
//BackOffStrategy.onFailure dosn't go through restart process 
override def preStart(): Unit = { 
log.info(s"PreStarting ${self.path.name} ...") 
super.preStart() 
} 
} 
def props = Props(new StorageActor) 
} 
object StorageActorGuardian {  //带监管策略的StorageActor 
def props: Props = { //在这里定义了监管策略和StorageActor构建 
def decider: PartialFunction[Throwable, SupervisorStrategy.Directive] = { 
case _: StorageActor.DbException => SupervisorStrategy.Restart 
} 
val options = Backoff.onStop(StorageActor.props, "dbWriter", 100 millis, 500 millis, 0.0) 
.withManualReset 
.withSupervisorStrategy( 
OneForOneStrategy(maxNrOfRetries = 3, withinTimeRange = 1 second)( 
decider.orElse(SupervisorStrategy.defaultDecider) 
) 
) 
BackoffSupervisor.props(options) 
} 
} 
object IntegrateDemo extends App { 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val numOfActors = 3 
val routees: List[ActorRef] = List.fill(numOfActors)( 
sys.actorOf(StorageActorGuardian.props)) 
val routeePaths: List[String] = routees.map{ref => "/user/"+ref.path.name} 
val storageActorPool = sys.actorOf( 
RoundRobinGroup(routeePaths).props() 
.withDispatcher("akka.pool-dispatcher") 
,"starageActorPool" 
) 
implicit val timeout = Timeout(3 seconds) 
Source(Stream.from(1)).delay(3.second,DelayOverflowStrategy.backpressure) 
.mapAsync(parallelism = 1){ n => 
(storageActorPool ? StorageActor.Query(n,s"Record")).mapTo[String] 
}.runWith(Sink.foreach(println)) 
scala.io.StdIn.readLine() 
sys.terminate() 
}

SinkActorRefAckDemo.scala:

package sinkactorrefack 
import akka.actor._ 
import akka.pattern._ 
import akka.stream._ 
import akka.stream.scaladsl._ 
import akka.routing._ 
import scala.concurrent.duration._ 
object StorageActor { 
val onInitMessage = "start" 
val onCompleteMessage = "done" 
val ackMessage = "ack" 
case class Query(rec: Int, qry: String) //模拟数据存写Query 
class DbException(cause: String) extends Exception(cause) //自定义存写异常 
class StorageActor extends Actor with ActorLogging { //存写操作Actor 
override def receive: Receive = { 
case `onInitMessage` => sender() ! ackMessage 
case Query(num,qry) => 
var res: String = "" 
try { 
res = saveToDB(num,qry) 
} catch { 
case e: Exception => Error(num,qry) //模拟操作异常 
        } 
sender() ! ackMessage 
case `onCompleteMessage` => //clean up resources 释放资源 
case _ => 
} 
def saveToDB(num: Int,qry: String): String = { //模拟存写函数 
val msg = s"${self.path} is saving: [$qry#$num]" 
if ( num == 3) Error(num,qry)        //模拟异常 
else { 
log.info(s"${self.path} is saving: [$qry#$num]") 
s"${self.path} is saving: [$qry#$num]" 
} 
} 
def Error(num: Int,qry: String) = { 
val msg = s"${self.path} is saving: [$qry#$num]" 
sender() ! ackMessage 
throw new DbException(s"$msg blew up, boooooom!!!") 
} 
//验证异常重启 
//BackoffStrategy.onStop goes through restart process 
override def preRestart(reason: Throwable, message: Option[Any]): Unit = { 
log.info(s"Restarting ${self.path.name} on ${reason.getMessage}") 
message match { 
case Some(Query(n,qry)) => 
self ! Query(n+101,qry)      //把异常消息再补发送给自己,n+101更正了异常因素 
case _ => 
log.info(s"Exception message: None") 
} 
super.preRestart(reason, message) 
} 
override def postRestart(reason: Throwable): Unit = { 
log.info(s"Restarted ${self.path.name} on ${reason.getMessage}") 
super.postRestart(reason) 
} 
override def postStop(): Unit = { 
log.info(s"Stopped ${self.path.name}!") 
super.postStop() 
} 
//BackOffStrategy.onFailure dosn't go through restart process 
override def preStart(): Unit = { 
log.info(s"PreStarting ${self.path.name} ...") 
super.preStart() 
} 
} 
def props = Props(new StorageActor) 
} 
object StorageActorGuardian {  //带监管策略的StorageActor 
def props: Props = { //在这里定义了监管策略和StorageActor构建 
def decider: PartialFunction[Throwable, SupervisorStrategy.Directive] = { 
case _: StorageActor.DbException => SupervisorStrategy.Restart 
} 
val options = Backoff.onStop(StorageActor.props, "dbWriter", 100 millis, 500 millis, 0.0) 
.withManualReset 
.withSupervisorStrategy( 
OneForOneStrategy(maxNrOfRetries = 3, withinTimeRange = 1 second)( 
decider.orElse(SupervisorStrategy.defaultDecider) 
) 
) 
BackoffSupervisor.props(options) 
} 
} 
object SinkActorRefWithAck extends App { 
import StorageActor._ 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val storageActor = sys.actorOf(StorageActor.props,"storageActor") 
val numOfActors = 3 
val routees: List[ActorRef] = List.fill(numOfActors)( 
sys.actorOf(StorageActorGuardian.props)) 
val routeePaths: List[String] = routees.map{ref => "/user/"+ref.path.name} 
val storageActorPool = sys.actorOf( 
RoundRobinGroup(routeePaths).props() 
.withDispatcher("akka.pool-dispatcher") 
,"starageActorPool" 
) 
Source(Stream.from(1)).map(n => Query(n,s"Record")).delay(3.second,DelayOverflowStrategy.backpressure) 
.runWith(Sink.actorRefWithAck( 
storageActorPool, onInitMessage, ackMessage,onCompleteMessage)) 
scala.io.StdIn.readLine() 
sys.terminate() 
}

SourceQueueDemo.scala:

import akka.actor._ 
import akka.stream._ 
import akka.stream.scaladsl._ 
import scala.concurrent._ 
import scala.util._ 
import akka.pattern._ 
object Calculator { 
trait Operations 
case class Add(op1:Int, op2:Int) extends Operations 
case class DisplayError(err: Exception) extends Operations 
case object Stop extends Operations 
case class ProduceError(err: Exception) extends Operations 
def props(inputQueue: SourceQueueWithComplete[String]) = Props(new Calculator(inputQueue)) 
} 
class Calculator(inputQueue: SourceQueueWithComplete[String]) extends Actor with ActorLogging{ 
import Calculator._ 
import context.dispatcher 
override def receive: Receive = { 
case Add(op1,op2) => 
val msg = s"$op1 + $op2 = ${op1 + op2}" 
inputQueue.offer(msg) 
.recover { 
case e: Exception => DisplayError(e)} 
.pipeTo(self).mapTo[String] 
case QueueOfferResult => 
log.info("QueueOfferResult.Enqueued") 
case QueueOfferResult.Enqueued => 
log.info("QueueOfferResult.Enqueued") 
case QueueOfferResult.Dropped => 
case QueueOfferResult.Failure(cause) => 
case QueueOfferResult.QueueClosed  => 
log.info("QueueOfferResult.QueueClosed") 
case Stop => inputQueue.complete() 
case ProduceError(e) => inputQueue.fail(e) 
} 
} 
object SourceQueueDemo extends App { 
implicit val sys = ActorSystem("demoSys") 
implicit val ec = sys.dispatcher 
implicit val mat = ActorMaterializer( 
ActorMaterializerSettings(sys) 
.withInputBuffer(initialSize = 16, maxSize = 16) 
) 
val source: Source[String, SourceQueueWithComplete[String]]  = 
Source.queue[String](bufferSize = 16, 
overflowStrategy = OverflowStrategy.backpressure) 
val inputQueue: SourceQueueWithComplete[String] = source.toMat(Sink.foreach(println))(Keep.left).run() 
inputQueue.watchCompletion().onComplete { 
case Success(result) => println(s"Calculator ends with: $result") 
case Failure(cause)  => println(s"Calculator ends with exception: ${cause.getMessage}") 
} 
val calc = sys.actorOf(Calculator.props(inputQueue),"calculator") 
import Calculator._ 
calc ! Add(3,5) 
scala.io.StdIn.readLine 
calc ! Add(39,1) 
scala.io.StdIn.readLine 
calc ! ProduceError(new Exception("Boooooommm!")) 
scala.io.StdIn.readLine 
calc ! Add(1,1) 
scala.io.StdIn.readLine 
sys.terminate() 
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/12836.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论