泛函编程(33)-泛函IO:Free Functor – Coyoneda详解编程语言

   在前几期讨论中我们终于推导出了Free Monad。这是一个Monad工厂,它可以把任何F[A]变成Monad。可惜的是它对F[A]是有所要求的:F必须是个Functor。Free Monad由此被称为由Functor F 产生的Monad。F必须是Functor,这个门槛使我们在使用Free Monad时很不方便。举个前面讨论过的例子:

1 trait Console[A] 
2 case object GetLine extends Console[String] 
3 case class PutLine(line: String) extends Console[Unit]

我们想用Free Monad把Console[A]变成Monad: Free[Console,A],但我们必须先得到Console的Functor实例:

1 implicit val consoleFunctor = new Functor[Console] { 
2     def map[A,B](ca: Console[A])(f: A => B): Console[B] = ca match { 
3         case GetLine => ????? 
4         case PutLine(l) => ???? 
5     } 
6 }

讲老实话,我到现在还没能想出如何实现这个map函数。除非把Console类型修改一下,这个可以参考前面讨论中的代码。

现在的问题是如果能有个什么方法把F[A]变成Functor,就像Free Monad那样有个Free Functor就好了。范畴学中Yoneda lemma结论中的Coyoneda就是一个Free Functor。

Yoneda lemma是这样推论的:如果我们有个这样的函数定义:def map[B](f: A => B): F[B],那我们就肯定能得出F[A]值,因为我们只需要把一个恒等函数当作f就能得到F[A]。反过来推论:如果我们有个F[A],F是任何Functor,A是任何类型,我们同样可以得出以上的map函数。我们可以用个类型来表示:

1 trait Yoneda[F[_],A] { 
2    def map[B](f: A => B): F[B] 
3 }

当然,这也意味着如果:有个类型B,一个函数(B => A),A是任意类型,一个F[B],F是任意Functor,我们肯定能得出F[A]:因为我们只要把(B => A)和F[B]传入map:

 map(fb: F[B])(f: B => A): F[A]。

我们同样可以用一个类型来表示:

1 trait Coyoneda[F[_],A] { coyo => 
2  type I 
3  def fi: F[I] 
4  def k(i: I): A 
5 }

在下面我们可以证明F[A]同等Coyoneda[F,A],而Coyoneda是个Functor。我们只需将F[A]升格(lift)到Coyoneda就能得到一个Free Functor了。

 1 trait Functor[F[_]] { 
 2     def map[A,B](fa: F[A])(f: A => B): F[B] 
 3 } 
 4 object Functor { 
 5     def apply[F[_]: Functor]: Functor[F] = implicitly[Functor[F]] 
 6 } 
 7 trait Monad[M[_]] { 
 8     def unit[A](a: A): M[A] 
 9     def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B] 
10     def map[A,B](ma: M[A])(f: A => B) = flatMap(ma)(a => unit(f(a))) 
11 } 
12 object Monad { 
13     def apply[M[_]: Monad]: Monad[M] = implicitly[Monad[M]] 
14 } 
15 trait Yoneda[F[_],A] { yo => 
16     def apply[B](f: A => B): F[B] 
17     def run: F[A] = apply(a => a)  //无需Functor实例就可以将Yoneda转变成F[A] 
18     def toCoyoneda: Coyoneda[F,A] = new Coyoneda[F,A] { //转Coyoneda无需Functor 
19         type I = A 
20         def fi = yo.run 
21         def k(i: A) = i 
22     } 
23     def map[B](f: A => B): Yoneda[F,B] = new Yoneda[F,B] { //纯粹的函数组合 map fusion 
24         def apply[C](g: B => C): F[C] = yo( f andThen g) 
25     } 
26 } 
27 trait Coyoneda[F[_],A] { coyo => 
28  type I 
29  def fi: F[I] 
30  def k(i: I): A 
31  def run(implicit F: Functor[F]): F[A] =  //Coyoneda转F需要F Functor实例 
32    F.map(fi)(k) 
33  def toYoneda(implicit F: Functor[F]): Yoneda[F,A] = new Yoneda[F,A] { //转Yoneda需要Functor 
34      def apply[B](f: A => B): F[B] = F.map(fi)(k _ andThen f) 
35  } 
36  def map[B](f: A => B): Coyoneda[F,B] = new Coyoneda[F,B] { 
37      type I = coyo.I 
38      def fi = coyo.fi 
39      def k(i: I) = f(coyo k i) 
40  } 
41 } 
42 object Yoneda { 
43     def apply[F[_]: Functor,A](fa: F[A]) = new Yoneda[F,A] { //F转Yoneda需要Functor 
44         def apply[B](f: A => B): F[B] = Functor[F].map(fa)(f) 
45     } 
46     implicit def yonedaFunctor[F[_]] = new Functor[({type l[x] = Yoneda[F,x]})#l] { 
47         def map[A,B](ya: Yoneda[F,A])(f: A => B) = ya map f 
48          
49     } 
50 } 
51 object Coyoneda { 
52     def apply[F[_],A](fa: F[A]): Coyoneda[F,A] = new Coyoneda[F,A] { 
53         type I = A          //把F[A]升格成Coyoneda, F无须为Functor 
54         def fi = fa 
55         def k(a: A) = a 
56     } 
57     implicit def coyonedaFunctor[F[_]] = new Functor[({type l[x] = Coyoneda[F,x]})#l] { 
58         def map[A,B](ca: Coyoneda[F,A])(f: A => B) = ca map f   //Coyoneda本身就是Functor 
59     } 
60 }

以上值得注意的是:F[A]可以直接升格等于Coyoneda,而Coyoneda是个Functor。换句话说我们把F[A]升格到Coyoneda就可以当Functor来用了。

我们的目的是把任何F[A]变成Free Monad,那么我们就需要有一个用Coyoneda产生的Free:

 1 trait Free[F[_],A] { 
 2  private case class FlatMap[B](a: Free[F,A], f: A => Free[F,B]) extends Free[F,B] 
 3  def unit(a: A): Free[F,A] = Return(a) 
 4  def flatMap[B](f: A => Free[F,B])(implicit F: Functor[F]): Free[F,B] = this match { 
 5      case Return(a) => f(a) 
 6      case Suspend(k) => Suspend(F.map(k)(a => a flatMap f)) 
 7   case FlatMap(b,g) => FlatMap(b, g andThen (_ flatMap f)) 
 8  } 
 9   
10  def map[B](f: A => B)(implicit F: Functor[F]): Free[F,B] = flatMap(a => Return(f(a))) 
11  def resume(implicit F: Functor[F]): Either[F[Free[F,A]],A] = this match { 
12      case Return(a) => Right(a) 
13      case Suspend(k) => Left(k) 
14      case FlatMap(a,f) => a match { 
15          case Return(b) => f(b).resume 
16          case Suspend(k) => Left(F.map(k)(_ flatMap f)) 
17          case FlatMap(b,g) => FlatMap(b, g andThen (_ flatMap f)).resume 
18      } 
19  } 
20  def foldMap[G[_]](f: (F ~> G))(implicit F: Functor[F], G: Monad[G]): G[A] = resume match { 
21        case Right(a) => G.unit(a) 
22        case Left(k) => G.flatMap(f(k))(_ foldMap f) 
23  } 
24 } 
25 case class Return[F[_],A](a: A) extends Free[F,A] 
26 case class Suspend[F[_],A](ffa: F[Free[F,A]]) extends Free[F,A] 
27 object Free { 
28 import scalaz.Unapply 
29   /** A free monad over the free functor generated by `S` */ 
30   type FreeC[S[_], A] = Free[({type f[x] = Coyoneda[S, x]})#f, A] 
31  
32   /** Suspends a value within a functor in a single step. Monadic unit for a higher-order monad. */ 
33   def liftF[S[_], A](value: => S[A])(implicit S: Functor[S]): Free[S, A] = 
34     Suspend(S.map(value)(Return[S, A])) 
35  
36   /** A version of `liftF` that infers the nested type constructor. */ 
37   def liftFU[MA](value: => MA)(implicit MA: Unapply[Functor, MA]): Free[MA.M, MA.A] = 
38     liftF(MA(value))(MA.TC) 
39  
40   /** A free monad over a free functor of `S`. */ 
41   def liftFC[S[_], A](s: S[A]): FreeC[S, A] = 
42     liftFU(Coyoneda(s)) 
43      
44   /** Interpret a free monad over a free functor of `S` via natural transformation to monad `M`. */ 
45   def runFC[S[_], M[_], A](sa: FreeC[S, A])(interp: S ~> M)(implicit M: Monad[M]): M[A] = 
46     sa.foldMap[M](new (({type λ[α] = Coyoneda[S, α]})#λ ~> M) { 
47       def apply[A](cy: Coyoneda[S, A]): M[A] = 
48         M.map(interp(cy.fi))(cy.k) 
49       }) 
50 }

我们把前面推导出来的Free搬过来。然后在Free companion object里增加了FreeC类型:

type FreeC[S[_],A] = Free[({type f[x] = Coyoneda[F,x]})#f, A]

这个可以说是一个由Coyoneda产生的Free。

现在我们要想办法把S[A]升格成FreeC:liftFC[S[_],A](s: S[A]): FreeC[S,A],这里需要先把S[A]升格成Coyoneda:Coyoneda(s)。

由于Coyoneda[S,A]是个多层嵌入类型。我们在liftFU函数中需要借用scalaz的Unapply类型来分解出Coyoneda, S[A]然后施用在liftF;

def liftF[S[_],A](sa: S[A])(implicit S: Functor[S]),这里的S就是Coyoneda。

Interpreter沿用了foldMap但是调整了转换源目标类型 Functor >>> Coyoneda。其它如Trampoline机制维持不变。

现在我们可以直接用任何F[A]来产生Free了。先试试上面的那个Console。这个Console不是个Functor:

 1 trait Console[A] 
 2 case object GetLine extends Console[String] 
 3 case class PutLine(line: String) extends Console[Unit] 
 4 import Free._ 
 5 implicit def liftConsole[A](ca: Console[A]): FreeC[Console,A] = liftFC(ca) 
 6                                                   //> liftConsole: [A](ca: ch13.ex11.Console[A])ch13.ex11.Free.FreeC[ch13.ex11.Co 
 7                                                   //| nsole,A] 
 8 for { 
 9     _ <- PutLine("What is your first name ?") 
10     first <- GetLine 
11     _ <- PutLine("What is your last name ?") 
12     last <- GetLine 
13     _ <- PutLine(s"Hello, $first $last !") 
14 } yield ()                                        //> res0: ch13.ex11.Free[[x]ch13.ex11.Coyoneda[ch13.ex11.Console,x],Unit] = Sus 
15                                                   //| pend([email protected])

 可以使用Free的Monadic语言了。下面再试试Interpreter部分:

 

 1 val ioprg = for { 
 2     _ <- PutLine("What is your first name ?") 
 3     first <- GetLine 
 4     _ <- PutLine("What is your last name ?") 
 5     last <- GetLine 
 6     _ <- PutLine(s"Hello, $first $last !") 
 7 } yield ()                                        //> ioprg  : ch13.ex11.Free[[x]ch13.ex11.Coyoneda[ch13.ex11.Console,x],Unit] =  
 8                                                   //| Suspend([email protected]) 
 9  
10 type Id[A] = A 
11 implicit val idMonad = new Monad[Id] { 
12     def unit[A](a: A) = a 
13     def flatMap[A,B](fa: A)(f: A => B): B = f(fa) 
14 }                                                 //> idMonad  : ch13.ex11.Monad[ch13.ex11.Id] = ch13.ex11$$anonfun$main$1$$anon$ 
15                                                   //| [email protected] 
16  
17 object RealConsole extends (Console ~> Id) { 
18     def apply[A](ca: Console[A]): A = ca match { 
19         case GetLine => readLine 
20         case PutLine(l) => println(l) 
21     } 
22 } 
23 Free.runFC(ioprg)(RealConsole)                    //> What is your first name ?/

 

也很顺利呢。再试试加了State维护的IO程序:

 

 1 case class State[S,A](runState: S => (A,S)) { 
 2     def map[B](f: A => B) = State[S,B](s => { 
 3         val (a1,s1) = runState(s) 
 4         (f(a1),s1) 
 5     }) 
 6     def flatMap[B](f: A => State[S,B]) = State[S,B](s => { 
 7         val (a1,s1) = runState(s) 
 8         f(a1).runState(s1) 
 9     }) 
10 } 
11 case class InOutLog(inLog: List[String], outLog: List[String]) 
12 type LogState[A] = State[InOutLog, A] 
13 implicit val logStateMonad = new Monad[LogState] { 
14     def unit[A](a: A) = State(s => (a, s)) 
15     def flatMap[A,B](sa: LogState[A])(f: A => LogState[B]) = sa flatMap f 
16 }                                                 //> logStateMonad  : ch13.ex11.Monad[ch13.ex11.LogState] = ch13.ex11$$anonfun$m 
17                                                   //| [email protected] 
18 object MockConsole extends(Console ~> LogState) { 
19     def apply[A](c: Console[A]): LogState[A] = State( 
20         s => (c,s) match { 
21             case (GetLine, InOutLog(in,out)) => (in.head, InOutLog(in.tail, out)) 
22           case (PutLine(l), InOutLog(in,out)) => ((),InOutLog(in, l :: out)) 
23         }) 
24 } 
25 val s = Free.runFC(ioprg)(MockConsole)            //> s  : ch13.ex11.LogState[Unit] = State(<function1>) 
26 val ls = s.runState(InOutLog(List("Tiger","Chan"),List())) 
27                                                   //> ls  : (Unit, ch13.ex11.InOutLog) = ((),InOutLog(List(),List(Hello, Tiger Ch 
28                                                   //| an !, What is your last name ?, What is your first name ?)))

 

也能正确地维护状态。
现在我们可以把任何F[A]类型变成Free Monad并用它实现Monadic programming及副作用解译运算!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/12952.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论