泛函编程(29)-泛函实用结构:Trampoline-不再怕StackOverflow详解编程语言

   泛函编程方式其中一个特点就是普遍地使用递归算法,而且有些地方还无法避免使用递归算法。比如说flatMap就是一种推进式的递归算法,没了它就无法使用for-comprehension,那么泛函编程也就无法被称为Monadic Programming了。虽然递归算法能使代码更简洁易明,但同时又以占用堆栈(stack)方式运作。堆栈是软件程序有限资源,所以在使用递归算法对大型数据源进行运算时系统往往会出现StackOverflow错误。如果不想办法解决递归算法带来的StackOverflow问题,泛函编程模式也就失去了实际应用的意义了。

针对StackOverflow问题,Scala compiler能够对某些特别的递归算法模式进行优化:把递归算法转换成while语句运算,但只限于尾递归模式(TCE, Tail Call Elimination),我们先用例子来了解一下TCE吧:

以下是一个右折叠算法例子:

1 def foldR[A,B](as: List[A], b: B, f: (A,B) => B): B = as match { 
2     case Nil => b 
3     case h :: t => f(h,foldR(t,b,f)) 
4 }                                                 //> foldR: [A, B](as: List[A], b: B, f: (A, B) => B)B 
5 def add(a: Int, b: Int) = a + b                   //> add: (a: Int, b: Int)Int 
6  
7 foldR((1 to 100).toList, 0, add)                  //> res0: Int = 5050 
8 foldR((1 to 10000).toList, 0, add)                //> java.lang.StackOverflowError

以上的右折叠算法中自引用部分不在最尾部,Scala compiler无法进行TCE,所以处理一个10000元素的List就发生了StackOverflow。

再看看左折叠:

1 def foldL[A,B](as: List[A], b: B, f: (B,A) => B): B = as match { 
2     case Nil => b 
3     case h :: t => foldL(t,f(b,h),f) 
4 }                                                 //> foldL: [A, B](as: List[A], b: B, f: (B, A) => B)B 
5 foldL((1 to 100000).toList, 0, add)               //> res1: Int = 705082704

在这个左折叠例子里自引用foldL出现在尾部位置,Scala compiler可以用TCE来进行while转换:

 1   def foldl2[A,B](as: List[A], b: B, 
 2                  f: (B,A) => B): B = { 
 3     var z = b 
 4     var az = as 
 5     while (true) { 
 6       az match { 
 7         case Nil => return z 
 8         case x :: xs => { 
 9           z = f(z, x) 
10           az = xs 
11         } 
12       } 
13     } 
14     z 
15   }

经过转换后递归变成Jump,程序不再使用堆栈,所以不会出现StackOverflow。

但在实际编程中,统统把递归算法编写成尾递归是不现实的。有些复杂些的算法是无法用尾递归方式来实现的,加上JVM实现TCE的能力有局限性,只能对本地(Local)尾递归进行优化。

我们先看个稍微复杂点的例子:

 

1 def even[A](as: List[A]): Boolean = as match { 
2     case Nil => true 
3     case h :: t => odd(t) 
4 }                                                 //> even: [A](as: List[A])Boolean 
5 def odd[A](as: List[A]): Boolean = as match { 
6     case Nil => false 
7     case h :: t => even(t) 
8 }                                                 //> odd: [A](as: List[A])Boolean

 

在上面的例子里even和odd分别为跨函数的各自的尾递归,但Scala compiler无法进行TCE处理,因为JVM不支持跨函数Jump:

 

1 even((1 to 100).toList)                           //> res2: Boolean = true 
2 even((1 to 101).toList)                           //> res3: Boolean = false 
3 odd((1 to 100).toList)                            //> res4: Boolean = false 
4 odd((1 to 101).toList)                            //> res5: Boolean = true 
5 even((1 to 10000).toList)                         //> java.lang.StackOverflowError

 

处理10000个元素的List还是出现了StackOverflowError

我们可以通过设计一种数据结构实现以heap交换stack。Trampoline正是专门为解决StackOverflow问题而设计的数据结构:

 

1 trait Trampoline[+A] { 
2  final def runT: A = this match { 
3       case Done(a) => a 
4       case More(k) => k().runT 
5   } 
6 } 
7 case class Done[+A](a: A) extends Trampoline[A] 
8 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A]

 

Trampoline代表一个可以一步步进行的运算。每步运算都有两种可能:Done(a),直接完成运算并返回结果a,或者More(k)运算k后进入下一步运算;下一步又有可能存在Done和More两种情况。注意Trampoline的runT方法是明显的尾递归,而且runT有final标示,表示Scala可以进行TCE。

有了Trampoline我们可以把even,odd的函数类型换成Trampoline:

1 def even[A](as: List[A]): Trampoline[Boolean] = as match { 
2     case Nil => Done(true) 
3     case h :: t => More(() => odd(t)) 
4 }                                                 //> even: [A](as: List[A])ch13.ex1.Trampoline[Boolean] 
5 def odd[A](as: List[A]): Trampoline[Boolean] = as match { 
6     case Nil => Done(false) 
7     case h :: t => More(() => even(t)) 
8 }                                                 //> odd: [A](as: List[A])ch13.ex1.Trampoline[Boolean]

我们可以用Trampoline的runT来运算结果:

 

1 even((1 to 10000).toList).runT                    //> res6: Boolean = true 
2 even((1 to 10001).toList).runT                    //> res7: Boolean = false 
3 odd((1 to 10000).toList).runT                     //> res8: Boolean = false 
4 odd((1 to 10001).toList).runT                     //> res9: Boolean = true

 

这次我们不但得到了正确结果而且也没有发生StackOverflow错误。就这么简单?

我们再从一个比较实际复杂一点的例子分析。在这个例子中我们遍历一个List并维持一个状态。我们首先需要State类型:

 

 1 case class State[S,+A](runS: S => (A,S)) { 
 2 import State._ 
 3     def flatMap[B](f: A => State[S,B]): State[S,B] = State[S,B] { 
 4         s => { 
 5             val (a1,s1) = runS(s) 
 6             f(a1) runS s1 
 7         } 
 8     } 
 9   def map[B](f: A => B): State[S,B] = flatMap( a => unit(f(a))) 
10 } 
11 object State { 
12     def unit[S,A](a: A) = State[S,A] { s => (a,s) } 
13     def getState[S]: State[S,S] = State[S,S] { s => (s,s) } 
14     def setState[S](s: S): State[S,Unit] = State[S,Unit] { _ => ((),s)} 
15 }

 

再用State类型来写一个对List元素进行序号标注的函数:

 1 def zip[A](as: List[A]): List[(A,Int)] = { 
 2     as.foldLeft( 
 3       unit[Int,List[(A,Int)]](List()))( 
 4       (acc,a) => for { 
 5         xs <- acc 
 6         n <- getState[Int] 
 7         _ <- setState[Int](n + 1) 
 8       } yield (a,n) :: xs 
 9     ).runS(0)._1.reverse 
10 }                                                 //> zip: [A](as: List[A])List[(A, Int)]

运行一下这个zip函数:

 

1 zip((1 to 10).toList)                             //> res0: List[(Int, Int)] = List((1,0), (2,1), (3,2), (4,3), (5,4), (6,5), (7,6 
2                                                   //| ), (8,7), (9,8), (10,9))

 

结果正确。如果针对大型的List呢?

 

1 zip((1 to 10000).toList)                          //> java.lang.StackOverflowError

 

按理来说foldLeft是尾递归的,怎么StackOverflow出现了。这是因为State组件flatMap是一种递归算法,也会导致StackOverflow。那么我们该如何改善呢?我们是不是像上面那样把State转换动作的结果类型改成Trampoline就行了呢?

 

 1 case class State[S,A](runS: S => Trampoline[(A,S)]) { 
 2     def flatMap[B](f: A => State[S,B]): State[S,B] = State[S,B] { 
 3         s => More(() => { 
 4             val (a1,s1) = runS(s).runT 
 5             More(() => f(a1) runS s1) 
 6         }) 
 7     } 
 8   def map[B](f: A => B): State[S,B] = flatMap( a => unit(f(a))) 
 9 } 
10 object State { 
11     def unit[S,A](a: A) = State[S,A] { s => Done((a,s)) } 
12     def getState[S]: State[S,S] = State[S,S] { s => Done((s,s)) } 
13     def setState[S](s: S): State[S,Unit] = State[S,Unit] { _ => Done(((),s))} 
14 } 
15 trait Trampoline[+A] { 
16  final def runT: A = this match { 
17       case Done(a) => a 
18       case More(k) => k().runT 
19   } 
20 } 
21 case class Done[+A](a: A) extends Trampoline[A] 
22 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A] 
23  
24 def zip[A](as: List[A]): List[(A,Int)] = { 
25     as.foldLeft( 
26       unit[Int,List[(A,Int)]](List()))( 
27       (acc,a) => for { 
28         xs <- acc 
29         n <- getState[Int] 
30         _ <- setState[Int](n + 1) 
31       } yield (a,n) :: xs 
32     ).runS(0).runT._1.reverse 
33 }                                                 //> zip: [A](as: List[A])List[(A, Int)] 
34 zip((1 to 10).toList)                             //> res0: List[(Int, Int)] = List((1,0), (2,1), (3,2), (4,3), (5,4), (6,5), (7, 
35                                                   //| 6), (8,7), (9,8), (10,9))

 

在这个例子里我们把状态转换函数 S => (A,S) 变成 S => Trampoline[(A,S)]。然后把其它相关函数类型做了相应调整。运行zip再检查结果:结果正确。那么再试试大型List:

1 zip((1 to 10000).toList)                          //> java.lang.StackOverflowError

还是会出现StackOverflow。这次是因为flatMap中的runT不在尾递归位置。那我们把Trampoline变成Monad看看如何?那我们就得为Trampoline增加一个flatMap函数:

 

 1 trait Trampoline[+A] { 
 2  final def runT: A = this match { 
 3       case Done(a) => a 
 4       case More(k) => k().runT 
 5   } 
 6   def flatMap[B](f: A => Trampoline[B]): Trampoline[B] = { 
 7       this match { 
 8           case Done(a) => f(a) 
 9           case More(k) => f(runT) 
10       } 
11   } 
12 } 
13 case class Done[+A](a: A) extends Trampoline[A] 
14 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A]

这样我们可以把State.flatMap调整成以下这样:

 1 case class State[S,A](runS: S => Trampoline[(A,S)]) { 
 2     def flatMap[B](f: A => State[S,B]): State[S,B] = State[S,B] { 
 3         s => More(() => { 
 4 //            val (a1,s1) = runS(s).runT 
 5 //            More(() => f(a1) runS s1) 
 6           runS(s) flatMap {   // runS(s) >>> Trampoline 
 7             case (a1,s1) => More(() => f(a1) runS s1) 
 8           } 
 9         }) 
10     } 
11   def map[B](f: A => B): State[S,B] = flatMap( a => unit(f(a))) 
12 }

现在我们把递归算法都推到了Trampoline.flatMap这儿了。不过Trampoline.flatMap的runT引用f(runT)不在尾递归位置,所以这样调整还不足够。看来核心还是要解决flatMap尾递归问题。我们可以再为Trampoline增加一个状态结构FlatMap然后把flatMap函数引用变成类型实例构建(type construction):

1 case class Done[+A](a: A) extends Trampoline[A] 
2 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A] 
3 case class FlatMap[A,B](sub: Trampoline[A], k: A => Trampoline[B]) extends Trampoline[B]

case class FlatMap这种Trampoline状态意思是先引用sub然后把结果传递到下一步k再运行k:基本上是沿袭flatMap功能。再调整Trampoline.resume, Trampoline.flatMap把FlatMap这种状态考虑进去:

 1 trait Trampoline[+A] { 
 2  final def runT: A = resume match { 
 3       case Right(a) => a 
 4       case Left(k) => k().runT 
 5   } 
 6   def flatMap[B](f: A => Trampoline[B]): Trampoline[B] = { 
 7       this match { 
 8 //          case Done(a) => f(a) 
 9 //          case More(k) => f(runT) 
10       case FlatMap(a,g) => FlatMap(a, (x: Any) => g(x) flatMap f) 
11       case x => FlatMap(x, f) 
12       } 
13   } 
14   def map[B](f: A => B) = flatMap(a => Done(f(a))) 
15   def resume: Either[() => Trampoline[A], A] = this match { 
16     case Done(a) => Right(a) 
17     case More(k) => Left(k) 
18     case FlatMap(a,f) => a match { 
19         case Done(v) => f(v).resume 
20         case More(k) => Left(() => k() flatMap f) 
21         case FlatMap(b,g) => FlatMap(b, (x: Any) => g(x) flatMap f).resume 
22     } 
23   } 
24 } 
25 case class Done[+A](a: A) extends Trampoline[A] 
26 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A] 
27 case class FlatMap[A,B](sub: Trampoline[A], k: A => Trampoline[B]) extends Trampoline[B]

在以上对Trampoline的调整里我们引用了Monad的结合特性(associativity):

FlatMap(FlatMap(b,g),f) == FlatMap(b,x => FlatMap(g(x),f)

重新右结合后我们可以用FlatMap正确表达复数步骤的运算了。

现在再试着运行zip:

 1 def zip[A](as: List[A]): List[(A,Int)] = { 
 2     as.foldLeft( 
 3       unit[Int,List[(A,Int)]](List()))( 
 4       (acc,a) => for { 
 5         xs <- acc 
 6         n <- getState[Int] 
 7         _ <- setState[Int](n + 1) 
 8       } yield (a,n) :: xs 
 9     ).runS(0).runT._1.reverse 
10 }                                                 //> zip: [A](as: List[A])List[(A, Int)] 
11 zip((1 to 10000).toList)                          //> res0: List[(Int, Int)] = List((1,0), (2,1), (3,2), (4,3), (5,4), (6,5), (7,

这次运行正常,再不出现StackOverflowError了。

实际上我们可以考虑把Trampoline当作一种通用的堆栈溢出解决方案。

我们首先可以利用Trampoline的Monad特性来调控函数引用,如下:

1 val x = f()  
2 val y = g(x)  
3 h(y) 
4 //以上这三步函数引用可以写成: 
5 for { 
6  x <- f() 
7  y <- g(x) 
8  z <- h(y)  
9 } yield z

举个实际例子:

 1 implicit def step[A](a: => A): Trampoline[A] = { 
 2     More(() => Done(a)) 
 3 }                                                 //> step: [A](a: => A)ch13.ex1.Trampoline[A] 
 4 def getNum: Double = 3                            //> getNum: => Double 
 5 def addOne(x: Double) = x + 1                     //> addOne: (x: Double)Double 
 6 def timesTwo(x: Double) = x * 2                   //> timesTwo: (x: Double)Double 
 7 (for { 
 8     x <- getNum 
 9     y <- addOne(x) 
10     z <- timesTwo(y) 
11 } yield z).runT                                   //> res6: Double = 8.0

又或者:

1 def fib(n: Int): Trampoline[Int] = { 
2     if (n <= 1) Done(n) else for { 
3         x <- More(() => fib(n-1)) 
4         y <- More(() => fib(n-2)) 
5     } yield x + y 
6 }                                                 //> fib: (n: Int)ch13.ex1.Trampoline[Int] 
7 (fib(10)).runT                                    //> res7: Int = 55

从上面得出我们可以用flatMap来对Trampoline运算进行流程控制。另外我们还可以通过把多个Trampoline运算交叉组合来实现并行运算:

 1 trait Trampoline[+A] { 
 2  final def runT: A = resume match { 
 3       case Right(a) => a 
 4       case Left(k) => k().runT 
 5   } 
 6   def flatMap[B](f: A => Trampoline[B]): Trampoline[B] = { 
 7       this match { 
 8 //          case Done(a) => f(a) 
 9 //          case More(k) => f(runT) 
10       case FlatMap(a,g) => FlatMap(a, (x: Any) => g(x) flatMap f) 
11       case x => FlatMap(x, f) 
12       } 
13   } 
14   def map[B](f: A => B) = flatMap(a => Done(f(a))) 
15   def resume: Either[() => Trampoline[A], A] = this match { 
16     case Done(a) => Right(a) 
17     case More(k) => Left(k) 
18     case FlatMap(a,f) => a match { 
19         case Done(v) => f(v).resume 
20         case More(k) => Left(() => k() flatMap f) 
21         case FlatMap(b,g) => FlatMap(b, (x: Any) => g(x) flatMap f).resume 
22     } 
23   } 
24   def zip[B](tb: Trampoline[B]): Trampoline[(A,B)] = { 
25     (this.resume, tb.resume) match { 
26         case (Right(a),Right(b)) => Done((a,b)) 
27         case (Left(f),Left(g)) => More(() => f() zip g()) 
28         case (Right(a),Left(k)) => More(() => Done(a) zip k()) 
29         case (Left(k),Right(a)) => More(() => k() zip Done(a)) 
30     } 
31   } 
32 } 
33 case class Done[+A](a: A) extends Trampoline[A] 
34 case class More[+A](k: () => Trampoline[A]) extends Trampoline[A] 
35 case class FlatMap[A,B](sub: Trampoline[A], k: A => Trampoline[B]) extends Trampoline[B]

我们可以用这个zip函数把几个Trampoline运算交叉组合起来实现并行运算:

1 def hello: Trampoline[Unit] = for { 
2     _ <- print("Hello ") 
3     _ <- println("World!") 
4 } yield ()                                        //> hello: => ch13.ex1.Trampoline[Unit] 
5  
6 (hello zip hello zip hello).runT                  //> Hello Hello Hello World! 
7                                                   //| World! 
8                                                   //| World! 
9                                                   //| res8: ((Unit, Unit), Unit) = (((),()),())

用Trampoline可以解决StackOverflow这个大问题。现在我们可以放心地进行泛函编程了。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/12955.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论