泛函编程(6)-数据结构-List基础详解编程语言

    List是一种最普通的泛函数据结构,比较直观,有良好的示范基础。List就像一个管子,里面可以装载一长条任何类型的东西。如需要对管子里的东西进行处理,则必须在管子内按直线顺序一个一个的来,这符合泛函编程的风格。与其它的泛函数据结构设计思路一样,设计List时先考虑List的两种状态:空或不为空两种类型。这两种类型可以用case class 来表现:

1     trait List[+A] {} 
2     case class Cons[+A](head: A, tail: List[A]) extends List[A] 
3     case object Nil extends List[Nothing]

以上是一个可以装载A类型元素的List,是一个多态的类型(Polymorphic Type)。+A表示List是协变(Covariant)的,意思是如果apple是fruit的子类(subtype)那么List[apple]就是List[fruit]的子类。Nil继承了List[Nothing],Nothing是所有类型的子类。结合协变性质,Nil可以被视为List[Int],List[String]…

List的另一种实现方式:

1     trait List[+A] { 
2         def node: Option[(A, List[A])] 
3         def isEmpty = node.isEmpty 
4     } 
5     object List { 
6         def empty[A] = new List[A] { def node = None} 
7         def cons[A](head: A, tail: List[A]) = new List[A] { def node = Some((head, tail))} 
8     }

以上代码中empty,cons两个方法可以实现List的两个状态。

我们还是采用第一种实现方式来进行下面有关List数据运算的示范。第二种方式留待Stream的具体实现示范说明。

先来个List自由构建器:可以用List(1,2,3)这种形式构建List: 

1     object List { 
2         def apply[A](as: A*): List[A] = { 
3             if (as.isEmpty) Nil 
4             else Cons(as.head,apply(as.tail:_*)) 
5         } 
6     }

说明:使用了递归算法来处理可变数量的输入参数。apply的传入参数as是个数组Array[A],我们使用了Scala标准集合库Array的方法:as.head, as.tail。示范如下: 

1 scala> Array(1,2,3).head 
2 res11: Int = 1 
3  
4 scala> Array(1,2,3).tail 
5 res12: Array[Int] = Array(2, 3)

增加了apply方法后示范一下List的构成:

1 val li = List(1,2,3)                              //> li  : ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Nil))) 
2 val ls = List("one","two","three")                //> ls  : ch3.list.List[String] = Cons(one,Cons(two,Cons(three,Nil)))

与以下方式对比,写法简洁多了:

1 val lInt = Cons(1,Cons(2,Cons(3,Nil)))            //> lInt  : ch3.list.Cons[Int] = Cons(1,Cons(2,Cons(3,Nil)))

再来试一个运算:计算List[Int]里所有元素的和,还是用模式匹配和递归方式来写:

1     trait List[+A] { 
2       def sum: Int = this match { 
3           case Nil => 0 
4           case Cons(h: Int,t: List[Int]) => h + t.sum 
5       } 
6     }

我们把sum的实现放到特质申明里就可以用以下简洁的表达方式了:

1 List(1,2,3) sum                                   //> res0: Int = 6

再试着玩多态函数sum:

1       def sum[B >: A](z: B)(f: (B,B) => B): B = this match { 
2           case Nil => z 
3           case Cons(h,t) => f(h, t.sum(z)(f)) 
4       }

现在可以分别试试List[Int]和List[String]:

1 List(1,2,3).sum(0){_ + _}                         //> res0: Int = 6 
2 List("hello",",","World","!").sum(""){_ + _}      //> res1: String = hello,World!

以下是一些List常用的函数: 

 1     trait List[+A] { 
 2  
 3       def head: A = this match { 
 4           case Nil => sys.error("Empty List!") 
 5           case Cons(h,t) => h 
 6       } 
 7       def tail: List[A] = this match { 
 8           case Nil => sys.error("Empty List!") 
 9           case Cons(h,t) => t 
10       } 
11       def take(n: Int): List[A] = n match { 
12         case k if(k<0) => sys.error("index < 0 !") 
13         case 0 => Nil 
14         case _ => this match { 
15               case Nil => Nil 
16               case Cons(h,t) => Cons(h,t.take(n-1)) 
17           } 
18       } 
19       def takeWhile(f: A => Boolean): List[A] = this match { 
20           case Nil => Nil 
21           case Cons(h,t) => if(f(h)) Cons(h,t.takeWhile(f)) else Nil 
22       } 
23       def drop(n: Int): List[A] = n match { 
24         case k if(k<0) => sys.error("index < 0 !") 
25         case 0 => this 
26         case _ => this match { 
27               case Nil => Nil 
28               case Cons(h,t) => t.drop(n-1) 
29           } 
30       } 
31       def dropWhile(f: A => Boolean): List[A] = this match { 
32           case Nil => Nil 
33           case Cons(h,t) => if (f(h)) t.dropWhile(f) else this 
34       } 
35     }

看看以上的这些函数;是不是都比较相似?那是因为都是泛函编程风格的原因。主要以模式匹配和递归算法来实现。以下是使用示范:

1 List(1,2,3).head                                  //> res0: Int = 1 
2 List(1,2,3).tail                                  //> res1: ch3.list.List[Int] = Cons(2,Cons(3,Nil)) 
3 List(1,2,3).take(2)                               //> res2: ch3.list.List[Int] = Cons(1,Cons(2,Nil)) 
4 List(1,2,3).takeWhile(x => x < 3)                 //> res3: ch3.list.List[Int] = Cons(1,Cons(2,Nil)) 
5 List(1,2,3) takeWhile {_ < 3}                     //> res4: ch3.list.List[Int] = Cons(1,Cons(2,Nil)) 
6 List(1,2,3).drop(2)                               //> res5: ch3.list.List[Int] = Cons(3,Nil) 
7 List(1,2,3).dropWhile(x => x < 3)                 //> res6: ch3.list.List[Int] = Cons(3,Nil) 
8 List(1,2,3) dropWhile {_ < 3}                     //> res7: ch3.list.List[Int] = Cons(3,Nil)

试试把一个List拼在另一个List后面:

1         def ++[B >: A](a: List[B]): List[B] = this match { 
2             case Nil => a 
3             case Cons(h,t) => Cons(h,t.++(a)) 
4         }
1 ist(1,2) ++ List(3,4)                            //> res8: ch3.list.List[Int] = Cons(1,Cons(2,Cons(3,Cons(4,Nil))))

只是想试试Scala的简洁表达方式。

噢,漏了两个:

1       def init: List[A] = this match { 
2           case Cons(_,Nil) => Nil 
3           case Cons(h,t) => Cons(h,t.init) 
4       } 
5       def length: Int = this match { 
6         case Nil => 0 
7         case Cons(h,t) => 1 + t.length 
8       }
1 List(1,2,3).init                                  //> res9: ch3.list.List[Int] = Cons(1,Cons(2,Nil)) 
2 List(1,2,3).length                                //> res10: Int = 3

下面把几个泛函数据结构通用的函数实现一下:

 1       def map[B](f: A => B): List[B] = this match { 
 2           case Nil => Nil 
 3           case Cons(h,t) => Cons(f(h),( t map f)) 
 4       } 
 5       def flatMap[B]( f: A => List[B]): List[B] = this match { 
 6           case Nil => Nil 
 7           case Cons(h,t) => f(h) ++ ( t flatMap f ) 
 8       } 
 9       def filter(f: A => Boolean): List[A] = this match { 
10            case Nil => Nil 
11            case Cons(h,t) => if (f(h)) Cons(h,t.filter(f)) else t.filter(f) 
12       }
1 List(1,2,3) map {_ + 10}                          //> res13: ch3.list.List[Int] = Cons(11,Cons(12,Cons(13,Nil))) 
2 List(1,2,3) flatMap {x => List(x+10)}             //> res14: ch3.list.List[Int] = Cons(11,Cons(12,Cons(13,Nil))) 
3 List(1,2,3) filter {_ != 2}                       //> res15: ch3.list.List[Int] = Cons(1,Cons(3,Nil))

这几个函数有多种实现方法,使Scala for-comprehension对支持的数据结构得以实现。有关这几个函数在泛函编程里的原理和意义在后面的有关Functor,Applicative,Monad课题里细说。

 

原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/12978.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论