雷锋网(公众号:雷锋网) AI 科技评论按:本周,ICRA 2018 正式在澳大利亚布里斯班举办。作为 IEEE 机器人与自动化学会(IEEE Robotics and Automation Society)的重要会议,学术论文自然成为了不可忽视的一个部分。今年在论文上又有哪些最新进展,又有哪些领域成为最受关注的研究方向?雷锋网 AI 科技评论根据第一天的开幕式环节及官方发布的数据,整理了相应的重要看点。
机器人学是一个涵盖领域广阔、应用方向纵深的学科,从 ICRA 2018 可见一斑。ICRA 2018 共收到来自 800 个研究机构的 3681 位作者的投稿,共计 2586 篇,其中 1981 篇 ICRA 论文, 605 篇 RAL 论文,相较去年有 48% 的增长。
从投递论文数来看,美国仍然是学术研究的高产大国,以 630 篇论文领跑 ICRA 2018;而位于第二梯队的则是中国(230 篇)、德国(159 篇)、日本(115 篇);第三梯队的意大利、法国、英国、韩国均在 80 篇左右。
而从国家每百万人口的论文平均投递数来看,人口多的国家显然就不占优势了。凭借人均近 14 篇论文的骄人成绩,第一名被新加坡摘得;随后是瑞士和澳大利亚。
从论文接收率来看,ICRA 相比起其它学术会议来说还是比较高的,平均值为 40.9%,今年的接收率也延续了往年平均数。而值得一提的是,在上海举办的 ICRA 2011 以及在香港举办的 ICRA 2014 都呈现了较高的接收率,ICRA 2011 达到了惊人的 52%,而 ICRA 2014 则逼近 50%。两个接收率低于 40% 的 ICRA 会议分别是 ICRA 2013(德国卡尔斯鲁厄)以及不到 35% 的 ICRA 2015(瑞典斯德哥尔摩)。
从论文展示数来看,从 2013 年到 2016 年,过去 5 年的 ICRA 平均有 917 篇展示论文,今年则超过了 1000 篇。
本届 ICRA 总与会人数超过 2800 人,有 1052 位论文作者在会上分享他们最前沿的研究观点。近 2000 篇主会论文包含 152 个机器人相关的研究方向;其中 35 篇获奖提名论文占总论文数约 3%。
据统计,「Deep Learning in Robotics and Automation(机器人与自动化的深度学习)」共有 124 篇相关文章,以 10% 的比重顺理成章地成为了最受关注的热门研究领域。其中,有 7 篇获奖提名论文可以归类于这一领域,它们分别是(后方括号为获奖类别):
Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions(HRI)
LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes(Vision)
Optimization Beyond the Convolution: Generalizing Spatial Relations with End-to-End Metric Learning(Vision)
Learning Object Grasping for Soft Robot Hands(Manipulation)
Learning Robotic Assembly from CAD(Automation)
Online Learning of a Memory for Learning Rates(Conference)
Social Attention: Modeling Attention in Human Crowds(Cognitive)
而排名第二热门的「Motion and Path Planning(运动与路径规划)」则有 107 篇论文,有三篇获奖提名论文可以归类于这领域,它们分别是:
Learning Robotic Assembly from CAD(Automation)
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning(Service)
Where to Look? Predictive Perception with Applications to Planetary Exploration(Service)
(细心的读者朋友不难发现,Learning Robotic Assembly from CAD 这篇论文同时覆盖了两个最为热门的领域。)
尾随其后的 Localization 有 81 篇相关论文,但没有获奖提名论文。SLAM、Learning and Adaptive Systems、Multi-Robot Systems 均有超过 60 篇相关论文,也分别有四篇获奖提名论文属于对应领域。
不过值得一提的是,机器人学具有明显的长尾效应。在 120 个研究领域中,前十个热门研究领域的投递论文超过了一半。以「机器人与自动化的深度学习」和「运动与路径规划」为例,相应的研究人员就超过了 800 位。
在所有论文中,有 7 位教授学者在论文投递数量上遥遥领先,包括:
宾夕法尼亚大学教授 Vijay Kumar,共有 16 篇论文。Vijay Kumar 教授曾经连续两年作为 CCF-GAIR 大会的演讲嘉宾莅临深圳,他的精彩演讲给我们留下了深刻印象。往期演讲可参见:
瑞士苏黎世联邦理工学院 Roland Siegwart,14 篇论文;
MIT 教授 Daniela Rus,共 13 篇论文。Daniela Rus 也曾在 2016 年来到首届 CCF-GAIR 2016 做主题报告。往期演讲可参考:
意大利技术研究所 Nikos Tsagarakis,共有 11 篇论文;
弗赖堡大学教授 Wolfram Burgard,11 篇论文;
UC 伯克利教授 Sergey Levine,共 10 篇论文;
斯坦福教授 Allison M. Okamura,10 篇论文。
以下为论文提名详细名单:
Best Conference Paper Award:
-
Task-specific Sensor Planning for Robotic Assembly Tasks;
-
(&Best Student Paper Award )Design of an Autonomous Racecar: Perception, State Estimation and System Integration;
-
(&Best Student Paper Award )A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles;
-
Online Learning of a Memory for Learning Rates;
-
Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains;
-
Power and control autonomy for high speed locomotion with an insect-scale legged microrobot;
Best Paper Award in Medical Robotics:
-
A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke;
-
Mechanical Rubbing of Blood Clots using Helical Robots under Ultrasound Guidance;
-
Compact Design of a Hydraulic Driving Robot for Intra-operative MRI-guided Bilateral Stereotactic Neurosurgery;
Best Paper Award in Robot Manipulation:
-
Learning Modes of Within-hand Manipulation;
-
Learning Object Grasping for Soft Robot Hands;
-
(& Multi-Robot)Decentralized Adaptive Control for Collaborative Manipulation;
Best Paper Award on Multi-Robot Systems:
-
Pairwise Consistent Measurement Set Maximization for Robust Multi-robot Map Merging;
-
Voronoi-Based Coverage Control of Pan/Tilt/Zoom Camera Networks;
-
Talk Resource-Efficiently to Me: Optimal Communication Planning for Distributed SLAM Front-Ends;
Best Paper Award in Robot Vision:
-
LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes;
-
Optimization Beyond the Convolution: Generalizing Spatial Relations with End-to-End Metric Learning;
-
Online Photometric Calibration of Auto Exposure Video for Realtime Visual Odometry and SLAM;
Best Paper Award in Cognitive Robotics:
-
Negotiating with a robot: Analysis of Regulatory Focus Behavior;
-
Social Attention: Modeling Attention in Human Crowds;
-
(& Service)Temporal Spatial Inverse Semantics for Robots Communicating with Humans;
Best Paper Award in Service Robotics:
-
Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs;
-
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning;
-
Where to Look? Predictive Perception with Applications to Planetary Exploration;
ICRA Best Paper Award in Automation:
-
Accurate and Adaptive In situ Fabrication of an Undulated Wall using an On-Board Visual Sensing System;
-
Learning Robotic Assembly from CAD;
-
A Novel Automated Construction Scheme for Efficiently Developing Cloud Manufacturing Services;
Best Paper Award on Human-Robot Interaction (HRI) :
-
Scaling inertial forces to alter weight perception in virtual reality;
-
Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions;
-
Safety Map: A Unified Representation for Biomechanics Impact Data and Robot Instantaneous Dynamic Properties;
Best Paper Award on Unmanned Aerial Vehicles:
-
Towards a wind-powered UAV for ocean monitoring: performance, control and validation;
-
Control Inspired Design of a Fixed-Wing Unmanned Aerial-Aquatic Vehicle;
-
Onboard Vision-based Control of Agile Suspended Payload Maneuvers;
-
Design, Modeling and Control of Aerial Robot DRAGON: Dual-rotor-embedded-multilink Robot with the Ability of Multi-deGree-of-freedom Aerial TransformatiON.
35 位论文获奖提名作者将在会议期间进行相应的论文展示,更多精彩内容敬请期待雷锋网的专题报道。
。
原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/130097.html