新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

计算机视觉可以分为两大方向:基于学习的方法和基于几何的方法。其中基于学习的方法最火的就是深度学习,而基于几何方法最火的就是视觉SLAM。相较于激光SLAM,视觉SLAM可研究空间较大,是当前研究热点之一。


本次视觉SLAM比赛由AI研习社和INDEMIND联合举办,数据集使用双目视觉惯性模组采集。本数据集分为两个部分。easy和mid,分别代表简单和中等难度,适应不同的同学进行实践。
了解更多关于比赛难点、建议,可以扫码或点击右侧链接观看 赛前动员公开课 

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

提供rosbag数据和ground truth

其中rosbag可用话题为三个:

  • /cam0/image_raw 左⽬相机 频率 25hz

  • /cam1/image_raw 右⽬相机 频率 25hz

  • /imu0 imu信息,频率 200hz

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

使用Tum的数据集格式,⼀共8列,分别为pose(x,y,z)q(x,y,z, w)

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

ATE:Absolute Trajectory Error 绝对轨迹误差(如EVO⼯具中ape算法)

绝对轨迹误差是估计位姿和真实位姿的直接差值,可以⾮常直观地反应算法精度和轨迹全局⼀致性。

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

扫描下方二维码或 点击链接 即可报名

新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

雷锋网(公众号:雷锋网)雷锋网雷锋网

雷锋网版权文章,未经授权禁止转载。详情见。


新赛事 | AI研习社×INDEMIND 视觉SLAM挑战赛

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/138466.html

(0)
上一篇 2021年9月2日
下一篇 2021年9月2日

相关推荐

发表回复

登录后才能评论