作者:一粟
介绍
Java 6的并发编程包中的SynchronousQueue是一个没有数据缓冲的BlockingQueue,生产者线程对其的插入操作put必须等待消费者的移除操作take,反过来也一样。
不像ArrayBlockingQueue或LinkedListBlockingQueue,SynchronousQueue内部并没有数据缓存空间,你不能调用peek()方法来看队列中是否有数据元素,因为数据元素只有当你试着取走的时候才可能存在,不取走而只想偷窥一下是不行的,当然遍历这个队列的操作也是不允许的。队列头元素是第一个排队要插入数据的线程,而不是要交换的数据。数据是在配对的生产者和消费者线程之间直接传递的,并不会将数据缓冲数据到队列中。可以这样来理解:生产者和消费者互相等待对方,握手,然后一起离开。
SynchronousQueue的一个使用场景是在线程池里。Executors.newCachedThreadPool()就使用了SynchronousQueue,这个线程池根据需要(新任务到来时)创建新的线程,如果有空闲线程则会重复使用,线程空闲了60秒后会被回收。
实现原理
阻塞队列的实现方法有许多:
阻塞算法实现
阻塞算法实现通常在内部采用一个锁来保证多个线程中的put()和take()方法是串行执行的。采用锁的开销是比较大的,还会存在一种情况是线程A持有线程B需要的锁,B必须一直等待A释放锁,即使A可能一段时间内因为B的优先级比较高而得不到时间片运行。所以在高性能的应用中我们常常希望规避锁的使用。
public class NativeSynchronousQueue<E> { boolean putting = false; E item = null; public synchronized E take() throws InterruptedException { while (item == null) wait(); E e = item; item = null; notifyAll(); return e; } public synchronized void put(E e) throws InterruptedException { if (e==null) return; while (putting) wait(); putting = true; item = e; notifyAll(); while (item!=null) wait(); putting = false; notifyAll(); } }
信号量实现
经典同步队列实现采用了三个信号量,代码很简单,比较容易理解:
public class SemaphoreSynchronousQueue<E> { E item = null; Semaphore sync = new Semaphore(0); Semaphore send = new Semaphore(1); Semaphore recv = new Semaphore(0); public E take() throws InterruptedException { recv.acquire(); E x = item; sync.release(); send.release(); return x; } public void put (E x) throws InterruptedException{ send.acquire(); item = x; recv.release(); sync.acquire(); } }
在多核机器上,上面方法的同步代价仍然较高,操作系统调度器需要上千个时间片来阻塞或唤醒线程,而上面的实现即使在生产者put()时已经有一个消费者在等待的情况下,阻塞和唤醒的调用仍然需要。
Java 5实现
public class Java5SynchronousQueue<E> { ReentrantLock qlock = new ReentrantLock(); Queue waitingProducers = new Queue(); Queue waitingConsumers = new Queue(); static class Node extends AbstractQueuedSynchronizer { E item; Node next; Node(Object x) { item = x; } void waitForTake() { /* (uses AQS) */ } E waitForPut() { /* (uses AQS) */ } } public E take() { Node node; boolean mustWait; qlock.lock(); node = waitingProducers.pop(); if(mustWait = (node == null)) node = waitingConsumers.push(null); qlock.unlock(); if (mustWait) return node.waitForPut(); else return node.item; } public void put(E e) { Node node; boolean mustWait; qlock.lock(); node = waitingConsumers.pop(); if (mustWait = (node == null)) node = waitingProducers.push(e); qlock.unlock(); if (mustWait) node.waitForTake(); else node.item = e; } }
Java 5的实现相对来说做了一些优化,只使用了一个锁,使用队列代替信号量也可以允许发布者直接发布数据,而不是要首先从阻塞在信号量处被唤醒。
Java6实现
Java 6的SynchronousQueue的实现采用了一种性能更好的无锁算法 — 扩展的“Dual stack and Dual queue”算法。性能比Java5的实现有较大提升。竞争机制支持公平和非公平两种:非公平竞争模式使用的数据结构是后进先出栈(Lifo Stack);公平竞争模式则使用先进先出队列(Fifo Queue),性能上两者是相当的,一般情况下,Fifo通常可以支持更大的吞吐量,但Lifo可以更大程度的保持线程的本地化。
代码实现里的Dual Queue或Stack内部是用链表(LinkedList)来实现的,其节点状态为以下三种情况:
这个算法的特点就是任何操作都可以根据节点的状态判断执行,而不需要用到锁。
其核心接口是Transfer,生产者的put或消费者的take都使用这个接口,根据第一个参数来区别是入列(栈)还是出列(栈)。
/** * Shared internal API for dual stacks and queues. */ static abstract class Transferer { /** * Performs a put or take. * * @param e if non-null, the item to be handed to a consumer; * if null, requests that transfer return an item * offered by producer. * @param timed if this operation should timeout * @param nanos the timeout, in nanoseconds * @return if non-null, the item provided or received; if null, * the operation failed due to timeout or interrupt -- * the caller can distinguish which of these occurred * by checking Thread.interrupted. */ abstract Object transfer(Object e, boolean timed, long nanos); }
TransferQueue实现如下(摘自Java 6源代码),入列和出列都基于Spin和CAS方法:
/** * Puts or takes an item. */ Object transfer(Object e, boolean timed, long nanos) { /* Basic algorithm is to loop trying to take either of * two actions: * * 1. If queue apparently empty or holding same-mode nodes, * try to add node to queue of waiters, wait to be * fulfilled (or cancelled) and return matching item. * * 2. If queue apparently contains waiting items, and this * call is of complementary mode, try to fulfill by CAS'ing * item field of waiting node and dequeuing it, and then * returning matching item. * * In each case, along the way, check for and try to help * advance head and tail on behalf of other stalled/slow * threads. * * The loop starts off with a null check guarding against * seeing uninitialized head or tail values. This never * happens in current SynchronousQueue, but could if * callers held non-volatile/final ref to the * transferer. The check is here anyway because it places * null checks at top of loop, which is usually faster * than having them implicitly interspersed. */ QNode s = null; // constructed/reused as needed boolean isData = (e != null); for (;;) { QNode t = tail; QNode h = head; if (t == null || h == null) // saw uninitialized value continue; // spin if (h == t || t.isData == isData) { // empty or same-mode QNode tn = t.next; if (t != tail) // inconsistent read continue; if (tn != null) { // lagging tail advanceTail(t, tn); continue; } if (timed && nanos <= 0) // can't wait return null; if (s == null) s = new QNode(e, isData); if (!t.casNext(null, s)) // failed to link in continue; advanceTail(t, s); // swing tail and wait Object x = awaitFulfill(s, e, timed, nanos); if (x == s) { // wait was cancelled clean(t, s); return null; } if (!s.isOffList()) { // not already unlinked advanceHead(t, s); // unlink if head if (x != null) // and forget fields s.item = s; s.waiter = null; } return (x != null)? x : e; } else { // complementary-mode QNode m = h.next; // node to fulfill if (t != tail || m == null || h != head) continue; // inconsistent read Object x = m.item; if (isData == (x != null) || // m already fulfilled x == m || // m cancelled !m.casItem(x, e)) { // lost CAS advanceHead(h, m); // dequeue and retry continue; } advanceHead(h, m); // successfully fulfilled LockSupport.unpark(m.waiter); return (x != null)? x : e; } } }
参考文章
原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/141072.html