到目前为止,理论模型假设这三种元素在整个银河系中是均匀混合的,并且达到了类似于太阳大气层的化学富集水平,称为太阳金属性。今天,来自日内瓦大学(UNIGE)的一个天文学家小组证明,这些气体并不像以前认为的那样混合,这对星系演变的理解有很大影响。因此,对银河系演变的模拟将不得不进行修改。这些研究结果已经发表在《自然》杂志上。
星系是由恒星的集合体组成,主要是由氢和一点氦组成的星系间介质气体凝结而成。这种气体并不像星系中的气体那样含有金属。尽管它们是气态的原子,但是在天文学中,所有比氦气重的化学元素被统称为"金属"。星系由从外部落入的“处女”气体提供燃料,这使它们重新焕发活力并允许新的恒星形成。 同时,恒星在其整个生命过程中燃烧构成它们的氢,并通过核聚变合成形成其他元素。
当一颗已经达到其生命终点的恒星爆炸时,它会排出它所产生的金属,如铁、锌、碳和硅,将这些元素输入银河系的气体中。这些原子随后可以凝结成尘埃,特别是在银河系中较冷、密度较大的地方。最初,当银河系形成时,即100多亿年前,它没有金属。然后恒星逐渐用它们产生的金属丰富了环境。当这种气体中的金属量达到太阳中的水平时,天文学家就会说到达了太阳金属性。
因此,构成银河系的环境汇集了恒星产生的金属、由这些金属形成的尘埃颗粒,以及经常进入银河系的外部气体。到目前为止,理论模型认为这三种元素是均匀混合的,在我们银河系的所有地方都达到了太阳系组分,在恒星更多的中心,金属性略有增加。现在,天文学家想用哈勃太空望远镜上的紫外光谱仪来详细观察这一点。
光谱学允许将来自恒星的光按其单独的颜色或频率分开,有点像用棱镜分光或在彩虹中观察到的效果。在这种分解的光线中,天文学家对吸收线特别感兴趣。当我们观察一颗恒星时,构成恒星气体的金属会以一种特有的方式,在一个特定的频率下吸收非常小的一部分光,这使我们不仅可以识别它们的存在,而且可以说这是哪种金属,以及它的含量如何。
在25个小时里,科学家团队利用哈勃和智利的甚大望远镜(VLT)观察了25颗恒星的大气,同时开发了一种新的观测技术,通过同时观察铁、锌、钛、硅和氧等几种元素来考虑气体和尘埃的总成分,然后他们可以追踪尘埃中存在的金属数量,并将其添加到已经被先前的观测所量化的金属数量中,从而得到总数。
由于这种双重观察技术,天文学家们发现,不仅银河系的环境不均匀,而且所研究的一些地区的金属性只达到太阳系的10%。这一发现对设计关于星系形成和演化的理论模型起到了关键作用。从现在开始,我们将不得不通过提高分辨率来完善模拟,以便能够包括银河系不同位置这些金属性的变化。
这些结果对我们了解星系的演化,特别是我们自己星系的演化有很大影响。事实上,金属在恒星、宇宙尘埃、分子和行星的形成中起着根本性的作用。而且我们现在知道,今天新的恒星和行星可能是由成分非常不同的气体形成。
原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/147222.html