自己实现
import numpy as np def train_test_split(X, y, test_ratio=0.2, seed=None): """将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test""" assert X.shape[0] == y.shape[0], / "the size of X must be equal to the size of y" assert 0.0 <= test_ratio <= 1.0, / "test_ration must be valid" if seed: np.random.seed(seed) shuffled_indexes = np.random.permutation(len(X)) test_size = int(len(X) * test_ratio) test_indexes = shuffled_indexes[:test_size] train_indexes = shuffled_indexes[test_size:] X_train = X[train_indexes] y_train = y[train_indexes] X_test = X[test_indexes] y_test = y[test_indexes] return X_train, X_test, y_train, y_test
sklearn带的分类器‘
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(x,y,test_size= 0.2,random_state=666)
利用KNN算法测试
from sklearn.neighbors import KNeighborsClassifier KNN_classifier = KNeighborsClassifier(n_neighbors=3) KNN_classifier.fit(X_train,y_train) Y_predict = KNN_classifier.predict(X_test) Y_predict
判断准确率
sum(Y_predict==y_test)/len(y_test)
原创文章,作者:Maggie-Hunter,如若转载,请注明出处:https://blog.ytso.com/16218.html