Python数据结构与算法详解编程语言

数据结构与算法(Python

冒泡排序

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

冒泡排序算法的运作如下:

  • 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序的分析

交换过程图示(第一次):

 Python数据结构与算法详解编程语言

 

那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:

 def bubble_sort(alist): 
  
     for j in range(len(alist)-1,0,-1): 
  
         # j表示每次遍历需要比较的次数,是逐渐减小的 
  
         for i in range(j): 
  
             if alist[i] > alist[i+1]: 
  
                 alist[i], alist[i+1] = alist[i+1], alist[i] 
  
   
  
 li = [54,26,93,17,77,31,44,55,20] 
  
 bubble_sort(li) 
  
 print(li)

 

时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

冒泡排序的演示

效果:

 Python数据结构与算法详解编程语言

 

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

选择排序分析

排序过程:

 Python数据结构与算法详解编程语言

 

 红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

 def selection_sort(alist): 
  
     n = len(alist) 
  
     # 需要进行n-1次选择操作 
  
     for i in range(n-1): 
  
         # 记录最小位置 
  
         min_index = i 
  
         # 从i+1位置到末尾选择出最小数据 
  
         for j in range(i+1, n): 
  
             if alist[j] < alist[min_index]: 
  
                 min_index = j 
  
         # 如果选择出的数据不在正确位置,进行交换 
  
         if min_index != i: 
  
             alist[i], alist[min_index] = alist[min_index], alist[i] 
  
   
  
 alist = [54,226,93,17,77,31,44,55,20] 
  
 selection_sort(alist) 
  
 print(alist)

 

时间复杂度

  • 最优时间复杂度:O(n2)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

选择排序演示

 

插入排序

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

插入排序分析

 Python数据结构与算法详解编程语言

 def insert_sort(alist): 
  
     # 从第二个位置,即下标为1的元素开始向前插入 
  
     for i in range(1, len(alist)): 
  
         # 从第i个元素开始向前比较,如果小于前一个元素,交换位置 
  
         for j in range(i, 0, -1): 
  
             if alist[j] < alist[j-1]: 
  
                 alist[j], alist[j-1] = alist[j-1], alist[j] 
  
   
  
 alist = [54,26,93,17,77,31,44,55,20] 
  
 insert_sort(alist) 
  
 print(alist)

 

时间复杂度

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

插入排序演示

 

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为“基准”(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

快速排序的分析

 Python数据结构与算法详解编程语言

 复制代码 
 def quick_sort(alist, start, end): 
  
     """快速排序""" 
  
   
  
     # 递归的退出条件 
  
     if start >= end: 
  
         return 
  
   
  
     # 设定起始元素为要寻找位置的基准元素 
  
     mid = alist[start] 
  
   
  
     # low为序列左边的由左向右移动的游标 
  
     low = start 
  
   
  
     # high为序列右边的由右向左移动的游标 
  
     high = end 
  
   
  
     while low < high: 
  
         # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动 
  
         while low < high and alist[high] >= mid: 
  
             high -= 1 
  
         # 将high指向的元素放到low的位置上 
  
         alist[low] = alist[high] 
  
   
  
         # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动 
  
         while low < high and alist[low] < mid: 
  
             low += 1 
  
         # 将low指向的元素放到high的位置上 
  
         alist[high] = alist[low] 
  
   
  
     # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置 
  
     # 将基准元素放到该位置 
  
     alist[low] = mid 
  
   
  
     # 对基准元素左边的子序列进行快速排序 
  
     quick_sort(alist, start, low-1) 
  
   
  
     # 对基准元素右边的子序列进行快速排序 
  
     quick_sort(alist, low+1, end) 
  
   
  
   
  
 alist = [54,26,93,17,77,31,44,55,20] 
  
 quick_sort(alist,0,len(alist)-1) 
  
 print(alist) 

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定

从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。

快速排序演示

 

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序过程

希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

最后以1步长进行排序(此时就是简单的插入排序了)

希尔排序的分析

 Python数据结构与算法详解编程语言

 

 def shell_sort(alist): 
  
     n = len(alist) 
  
     # 初始步长 
  
     gap = n / 2 
  
     while gap > 0: 
  
         # 按步长进行插入排序 
  
         for i in range(gap, n): 
  
             j = i 
  
             # 插入排序 
  
             while j>=gap and alist[j-gap] > alist[j]: 
  
                 alist[j-gap], alist[j] = alist[j], alist[j-gap] 
  
                 j -= gap 
  
         # 得到新的步长 
  
         gap = gap / 2 
  
   
  
 alist = [54,26,93,17,77,31,44,55,20] 
  
 shell_sort(alist) 
  
 print(alist)

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定想:不稳定

希尔排序演示

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。

归并排序的分析

 Python数据结构与算法详解编程语言

 

 def merge_sort(alist): 
  
     if len(alist) <= 1: 
  
         return alist 
  
     # 二分分解 
  
     num = len(alist)/2 
  
     left = merge_sort(alist[:num]) 
  
     right = merge_sort(alist[num:]) 
  
     # 合并 
  
     return merge(left,right) 
  
 def merge(left, right): 
  
     '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组''' 
  
     #left与right的下标指针 
  
     l, r = 0, 0 
  
     result = [] 
  
     while l<len(left) and r<len(right): 
  
         if left[l] < right[r]: 
  
             result.append(left[l]) 
  
             l += 1 
  
         else: 
  
             result.append(right[r]) 
  
             r += 1 
  
     result += left[l:] 
  
     result += right[r:] 
  
     return result 
  
   
  
 alist = [54,26,93,17,77,31,44,55,20] 
  
 sorted_alist = mergeSort(alist) 
  
 print(sorted_alist)

 

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

 Python数据结构与算法详解编程语言

 

二分法查找实现

(非递归实现)

 def binary_search(alist, item): 
  
       first = 0 
  
       last = len(alist)-1 
  
       while first<=last: 
  
           midpoint = (first + last)/2 
  
           if alist[midpoint] == item: 
  
               return True 
  
           elif item < alist[midpoint]: 
  
               last = midpoint-1 
  
           else: 
  
               first = midpoint+1 
  
     return False 
  
 testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,] 
  
 print(binary_search(testlist, 3)) 
  
 print(binary_search(testlist, 13)) 
  
 (递归实现) 
 def binary_search(alist, item): 
  
     if len(alist) == 0: 
  
         return False 
  
     else: 
  
         midpoint = len(alist)//2 
  
         if alist[midpoint]==item: 
  
           return True 
  
         else: 
  
           if item<alist[midpoint]: 
  
             return binary_search(alist[:midpoint],item) 
  
           else: 
  
             return binary_search(alist[midpoint+1:],item) 
  
   
  
 testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,] 
  
 print(binary_search(testlist, 3)) 
  
 print(binary_search(testlist, 13))

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)
  • 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/17104.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论