最近数据中台很火,接触的很多企业都在提这个东西。然而,很多连数据基础都没有、仍然处在数据孤岛阶段的企业,上来就说我今年要做数据中台项目,这实际上是因为大家都在追热点,而没有真正搞明白这个名词的含义。
很多顶级架构师都喜欢谈中台,他们口中的中台和你了解的中台又有什么差距呢?往下看。
首先,国内的数据中台兴起,大多是因为阿里巴巴的马老师提出的”大中台、小前台”的口号。所以,我们先来看看阿里对数据中台的定义。
数据中台是什么
数据中台是指通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。
这些服务跟企业的业务有较强的关联性,是这个企业独有的且能复用的,它是企业业务和数据的沉淀,其不仅能降低重复建设、减少烟囱式协作的成本,也是差异化竞争优势所在。
广义的数据中台包括了数据技术,比如对海量数据进行采集、计算、存储、加工的一系列技术集合,今天谈到的数据中台包括数据模型,算法服务,数据产品,数据管理等等,和企业的业务有较强的关联性,是企业独有的且能复用的,比如企业自建的2000个基础模型,300个融合模型,5万个标签。它是企业业务和数据的沉淀,其不仅能降低重复建设,减少烟囱式协作的成本,也是差异化竞争优势所在。
数据中台的价值
1、数据复用。
浙江移动已经将2000个基础模型作为所有数据服务开发的基础,这些基础模型做到了“书同文,车同轨”,无论应用的 数据模型有多复杂,总是能溯源到2000张基础表,这奠定了数据核对和认知的基础,最大程度的避免了“重复数据抽取和维护带来的成本浪费。
曾经企业的数据抽取就有多份,报表一份,数据仓库一份,地市集市一份,无论是抽取压力、维护难度及数据一致性要求都很高。同时,统一的基础模型将相关业务领域的数据做了很好的汇聚,解决了数据互通的诉求,这点的意义巨大,谁都知道数据1+1>2的意思。
2、沉淀业务模型
在企业内,无论是专题、报表或取数,当前基本是烟囱式数据生产模式或者是项目制建设方式,无法形成标准化统一业务模型,无法沉淀和共享也就无法迭代生长,从而造成模型不能真正成为可重用的组件,无法支撑数据分析的快速响应和创新。只有在迭代生长中的业务模型才能从最初的单一字段,逐渐完善形成为企业最为宝贵的统一模型资产和统一数据资产。
以报表为例,企业报表成千上万的原因往往也是没有沉淀造成的,针对一个业务报表,由于不同的业务人员提出的角度不同,会幻化出成百上千的报表,如果有报表中台的概念,就可以提出一些基准报表的原则。
比如一个业务一张报表,已经有的业务报表只允许修改而不允许新增,自然老报表就会由于新的需求而不断完善,从而能演化成企业的基础报表目录,否则就是一堆报表的堆砌,后续的数据一致性问题层出不穷,管理成本急剧增加,人力投入越来越多,这样的事情在每个企业都在发生。
FineReport做的报表
3、数据驱动业务创新
我们都知道,以往的业务决策,大多是凭经验拍脑袋的,现如今,数据的价值和重要性不言而喻。企业的管理者在做决策时,越来越想要先看数据。所以,好的数据基础,是决策和创新的加速器。而现在市场竞争如此激烈的大环境,不但需要企业做出正确的决策,效率和执行力也是关乎存亡的,数据中台即是数据创新效率的保障。
研究过机器学习的都知道,没有好的规整数据,数据准备的过程极其冗长,这也是数据仓库模型的一个核心价值所在,比如运营商中要获取3个月的ARPU数据,如果没有融合模型的支撑,得自己从账单一层层汇总及关联,速度可想而知。
在如今的互联网时代,企业都在全力谋求转型,转型的关键是要具备跟互联网公司一样的快速创新能力,大数据是其中一个核心驱动力,但拥有大数据还是不够的,数据中台的能力往往最终决定速度,拥有速度意味着试错成本很低,意味着可以再来一次。
数据中台、数据仓库、大数据平台的关键区别是什么?
认可了数据中台的价值,我们自然是想要去快速搭建,然后真正去规划建设的时候,我们会发现,数据中台的建设和数据仓库、大数据平台是有重合的,这就需要我们充分理解三者的区别。
综上,我们会发现,数据中台是在数据仓库和大数据平台的基础上,将数据生产为为一个个数据 API 服务,以更高效的方式提供给业务,本质是一个构建在数据仓库之上的跨业务主题的业务系统。
所以,我们会发现,不论要做哪一个数据项目,数据才是核心,统一数据仓库、主数据是基础。只有打通各业务系统的数据孤岛,将数据标准、口径、模型、存储统一,形成具备完整性、规范性、一致性、准确性和及时性的高质量数据,才能逐渐释放数据价值。
如何进行数据价值变现
分为几个阶段:首先,把数据管理起来,形成统一数据资产(数据资产不等同于数据,数据资产是唯一的,能为业务产生价值的数据);
其次,将数据可视化,在我们将数据自动化、可视化的呈现出来的过程中,我们能够充分释放数据的信度、效度、准确度方面的价值。
这也是为什么越来越多的传统企业在进行数据项目规划时,通常会先做一个叫做”管理驾驶舱”的东西。其本质就是,通过上层呈现所要保证的一致性和规范性,倒逼下层的数据管理、数据治理,从而逐渐开展数据分析辅助决策、数据驱动业务等。数据可以告诉决策者一些潜在的规律,以数据来证明或判断决策。
第三个阶段,很多时候,即便数据质量非常完备了,但因为依赖于统计学的数据分析只能对历史的、以往发生过的事情做解释,所以往往总是会慢半拍。而数据挖掘、机器学习,这些近几年才流行起来的技术,可以充分利用海量的数据,通过算法模型去挖掘数据背后的规律,从而辅助我们提前预测或者个性化推荐。
以往我们只会用数据来证明我们历史的决策对错,现在我们用数据来引导我们做出对的决策。基于数据资产催生的人工智能,将数据进行再融合形成新的数据,源源不断给我们提供新的业务视角,让我们不断创新、不停去尝试。
当我们逐渐依赖数据机器人的指令,形成数据服务思维和习惯,让业务与数据形成循环活起来,让它成为业务的一部分,同时让机器智能成为决策环节,运营就可以智能化,即智能化的数字业务系统。
最后,想必对于各种企业要做数据项目,想要构建数据中台,我们可以形成一个优先级顺序,以管理驾驶舱为驱动的数据仓库建设——>面向各业务主题的全面数据治理——>非结构化数据+海量数据加速的大数据平台——>把数据变成个性化服务的数据中台。
BI 可视化
原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/172778.html