一、Mahout简介
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。
在Mahout实现的机器学习算法:
算法类 |
算法名 |
中文名 |
分类算法 |
Logistic Regression |
逻辑回归 |
Bayesian |
贝叶斯 |
|
SVM |
支持向量机 |
|
Perceptron |
感知器算法 |
|
Neural Network |
神经网络 |
|
Random Forests |
随机森林 |
|
Restricted Boltzmann Machines |
有限波尔兹曼机 |
|
聚类算法 |
Canopy Clustering |
Canopy聚类 |
K-means Clustering |
K均值算法 |
|
Fuzzy K-means |
模糊K均值 |
|
Expectation Maximization |
EM聚类(期望最大化聚类) |
|
Mean Shift Clustering |
均值漂移聚类 |
|
Hierarchical Clustering |
层次聚类 |
|
Dirichlet Process Clustering |
狄里克雷过程聚类 |
|
Latent Dirichlet Allocation |
LDA聚类 |
|
Spectral Clustering |
谱聚类 |
|
关联规则挖掘 |
Parallel FP Growth Algorithm |
并行FP Growth算法 |
回归 |
Locally Weighted Linear Regression |
局部加权线性回归 |
降维/维约简 |
Singular Value Decomposition |
奇异值分解 |
Principal Components Analysis |
主成分分析 |
|
Independent Component Analysis |
独立成分分析 |
|
Gaussian Discriminative Analysis |
高斯判别分析 |
|
进化算法 |
并行化了Watchmaker框架 |
|
推荐/协同过滤 |
Non-distributed recommenders |
Taste(UserCF, ItemCF, SlopeOne) |
Distributed Recommenders |
ItemCF |
|
向量相似度计算 |
RowSimilarityJob |
计算列间相似度 |
VectorDistanceJob |
计算向量间距离 |
|
非Map-Reduce算法 |
Hidden Markov Models |
隐马尔科夫模型 |
集合方法扩展 |
Collections |
扩展了java的Collections类 |
二、Mahout安装、配置
一、下载Mahout
http://archive.apache.org/dist/mahout/
二、解压
tar -zxvf mahout-distribution-0.9.tar.gz
三、配置环境变量
3.1、配置Mahout环境变量
# set mahout environment
export MAHOUT_HOME=/usr/local/mahout-distribution-0.9
export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATHma
四、验证Mahout是否安装成功
执行命令mahout。若列出一些算法,则成功,如图:
五、使用Mahout 之入门级使用
5.1、启动Hadoop
5.2、下载测试数据
a.下载一个文件synthetic_control.data,下载地址http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data,并把这个文件放在$MAHOUT_HOME目录下。
5.3、上传测试数据
c.创建测试目录testdata,并把数据导入到这个tastdata目录中(这里的目录的名字只能是testdata)
hadoop fs –mkdir –p /user/root/testdata
hadoop fs -put synthetic_control.data /user/root/testdata
5.4 使用Mahout中的kmeans聚类算法,执行命令:
mahout -core org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
花费5分钟左右完成聚类。
5.5 查看聚类结果
执行hadoop fs -ls/user/root/output,查看聚类结果。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/190692.html