一、概述
1.实验环境基于以前搭建的haoop HA;
2.spark HA所需要的zookeeper环境前文已经配置过,此处不再重复。
3.所需软件包为:scala-2.12.3.tgz、spark-2.2.0-bin-hadoop2.7.tar
4.主机规划
bd1 bd2 bd3 |
Worker |
bd4 bd5 |
Master、Worker |
二、配置Scala
1.解压并拷贝
[root@bd1 ~]# tar -zxf scala-2.12.3.tgz [root@bd1 ~]# cp -r scala-2.12.3 /usr/local/
2.配置环境变量
[root@bd1 ~]# vim /etc/profile export SCALA_HOME=/usr/local/scala export PATH=:$SCALA_HOME/bin:$PATH [root@bd1 ~]# source /etc/profile
3.验证
[root@bd1 ~]# scala -version Scala code runner version 2.12.3 -- Copyright 2002-2017, LAMP/EPFL and Lightbend, Inc.
三、配置Spark
1.解压并拷贝
[root@bd1 ~]# tar -zxf spark-2.2.0-bin-hadoop2.7.tgz [root@bd1 ~]# cp spark-2.2.0-bin-hadoop2.7 /usr/local/spark
2.配置环境变量
[root@bd1 ~]# vim /etc/profile export SCALA_HOME=/usr/local/scala export PATH=:$SCALA_HOME/bin:$PATH [root@bd1 ~]# source /etc/profile
3.修改spark-env.sh #文件不存在需要拷贝模板
[root@bd1 conf]# vim spark-env.sh export JAVA_HOME=/usr/local/jdk export HADOOP_HOME=/usr/local/hadoop export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop export SCALA_HOME=/usr/local/scala export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=bd4:2181,bd5:2181 -Dspark.deploy.zookeeper.dir=/spark" export SPARK_WORKER_MEMORY=1g export SPARK_WORKER_CORES=2 export SPARK_WORKER_INSTANCES=1
4.修改spark-defaults.conf #文件不存在需要拷贝模板
[root@bd1 conf]# vim spark-defaults.conf spark.master spark://master:7077 spark.eventLog.enabled true spark.eventLog.dir hdfs://master:/user/spark/history spark.serializer org.apache.spark.serializer.KryoSerializer
5.在HDFS文件系统中新建日志文件目录
hdfs dfs -mkdir -p /user/spark/history hdfs dfs -chmod 777 /user/spark/history
6.修改slaves
[root@bd1 conf]# vim slaves bd1 bd2 bd3 bd4 bd5
四、同步到其他主机
1.使用scp同步Scala到bd2-bd5
scp -r /usr/local/scala root@bd2:/usr/local/ scp -r /usr/local/scala root@bd3:/usr/local/ scp -r /usr/local/scala root@bd4:/usr/local/ scp -r /usr/local/scala root@bd5:/usr/local/
2.同步Spark到bd2-bd5
scp -r /usr/local/spark root@bd2:/usr/local/ scp -r /usr/local/spark root@bd3:/usr/local/ scp -r /usr/local/spark root@bd4:/usr/local/ scp -r /usr/local/spark root@bd5:/usr/local/
五、启动集群并测试HA
1.启动顺序为:zookeeper–>hadoop–>spark
2.启动spark
bd4:
[root@bd4 sbin]# cd /usr/local/spark/sbin/ [root@bd4 sbin]# ./start-all.sh starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd4.out bd4: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd4.out bd2: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd2.out bd3: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd3.out bd5: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd5.out bd1: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd1.out [root@bd4 sbin]# jps 3153 DataNode 7235 Jps 3046 JournalNode 7017 Master 3290 NodeManager 7116 Worker 2958 QuorumPeerMain
bd5:
[root@bd5 sbin]# ./start-master.sh starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd5.out [root@bd5 sbin]# jps 3584 NodeManager 5602 RunJar 3251 QuorumPeerMain 8564 Master 3447 DataNode 8649 Jps 8474 Worker 3340 JournalNode
3.停掉bd4的Master进程
[root@bd4 sbin]# kill -9 7017 [root@bd4 sbin]# jps 3153 DataNode 7282 Jps 3046 JournalNode 3290 NodeManager 7116 Worker 2958 QuorumPeerMain
五、总结
一开始时想把Master放到bd1和bd2上,但是启动Spark后发现两个节点上都是Standby。然后修改配置文件转移到bd4和bd5上,才顺利运行。换言之Spark HA的Master必须位于Zookeeper集群上才能正常运行,即该节点上要有JournalNode这个进程。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/192856.html