Spark Streaming笔记整理(三):DS的transformation与output操作

[TOC]


DStream的各种transformation

Transformation  Meaning
map(func)   对DStream中的各个元素进行func函数操作,然后返回一个新的DStream.
flatMap(func)   与map方法类似,只不过各个输入项可以被输出为零个或多个输出项
filter(func)    过滤出所有函数func返回值为true的DStream元素并返回一个新的DStream
repartition(numPartitions)  增加或减少DStream中的分区数,从而改变DStream的并行度
union(otherStream)  将源DStream和输入参数为otherDStream的元素合并,并返回一个新的DStream.
count()     通过对DStreaim中的各个RDD中的元素进行计数,然后返回只有一个元素的RDD构成的DStream
reduce(func)    对源DStream中的各个RDD中的元素利用func进行聚合操作,然后返回只有一个元素的RDD构成的新的DStream.
countByValue()  对于元素类型为K的DStream,返回一个元素为(K,Long)键值对形式的新的DStream,Long对应的值为源DStream中各个RDD的key出现的次数
reduceByKey(func, [numTasks])   利用func函数对源DStream中的key进行聚合操作,然后返回新的(K,V)对构成的DStream
join(otherStream, [numTasks])   输入为(K,V)、(K,W)类型的DStream,返回一个新的(K,(V,W)类型的DStream
cogroup(otherStream, [numTasks])    输入为(K,V)、(K,W)类型的DStream,返回一个新的 (K, Seq[V], Seq[W]) 元组类型的DStream
transform(func)     通过RDD-to-RDD函数作用于源码DStream中的各个RDD,可以是任意的RDD操作,从而返回一个新的RDD
updateStateByKey(func)  根据于key的前置状态和key的新值,对key进行更新,返回一个新状态的Dstream
Window 函数: 

可以看到很多都是在RDD中已经有的transformation算子操作,所以这里只关注transform、updateStateByKey和window函数

transformation之transform操作

DStream transform

1、transform操作,应用在DStream上时,可以用于执行任意的RDD到RDD的转换操作。它可以用于实现,DStream API中所没有提供的操作。比如说,DStream API中,并没有提供将一个DStream中的每个batch,与一个特定的RDD进行join的操作。但是我们自己就可以使用transform操作来实现该功能。

2、DStream.join(),只能join其他DStream。在DStream每个batch的RDD计算出来之后,会去跟其他DStream的RDD进行join。

案例

测试代码如下:

package cn.xpleaf.bigdata.spark.scala.streaming.p1

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

/**
  * 使用Transformation之transform来完成在线黑名单过滤
  * 需求:
  *     将日志数据中来自于ip["27.19.74.143", "110.52.250.126"]实时过滤掉
  * 数据格式
  *     27.19.74.143##2016-05-30 17:38:20##GET /static/image/common/faq.gif HTTP/1.1##200##1127
  */
object _06SparkStreamingTransformOps {
    def main(args: Array[String]): Unit = {
        if (args == null || args.length < 2) {
            System.err.println(
                """Parameter Errors! Usage: <hostname> <port>
                  |hostname: 监听的网络socket的主机名或ip地址
                  |port:    监听的网络socket的端口
                """.stripMargin)
            System.exit(-1)
        }
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)

        val conf = new SparkConf()
            .setAppName(_01SparkStreamingNetWorkOps.getClass.getSimpleName)
            .setMaster("local[2]")
        val ssc = new StreamingContext(conf, Seconds(2))

        val hostname = args(0).trim
        val port = args(1).trim.toInt

        //黑名单数据
        val blacklist = List(("27.19.74.143", true), ("110.52.250.126", true))
//        val blacklist = List("27.19.74.143", "110.52.250.126")
        val blacklistRDD:RDD[(String, Boolean)] = ssc.sparkContext.parallelize(blacklist)

        val linesDStream:ReceiverInputDStream[String] = ssc.socketTextStream(hostname, port)

        // 如果用到一个DStream和rdd进行操作,无法使用dstream直接操作,只能使用transform来进行操作
        val filteredDStream:DStream[String] = linesDStream.transform(rdd => {
            val ip2InfoRDD:RDD[(String, String)] = rdd.map{line => {
                (line.split("##")(0), line)
            }}
            /** A(M) B(N)两张表:
              * across join
              *     交叉连接,没有on条件的连接,会产生笛卡尔积(M*N条记录) 不能用
              * inner join
              *     等值连接,取A表和B表的交集,也就是获取在A和B中都有的数据,没有的剔除掉 不能用
              * left outer join
              *     外链接:最常用就是左外连接(将左表中所有的数据保留,右表中能够对应上的数据正常显示,在右表中对应不上,显示为null)
              *         可以通过非空判断是左外连接达到inner join的结果
              */
            val joinedInfoRDD:RDD[(String, (String, Option[Boolean]))] = ip2InfoRDD.leftOuterJoin(blacklistRDD)

            joinedInfoRDD.filter{case (ip, (line, joined)) => {
                joined == None
            }}//执行过滤操作
                .map{case (ip, (line, joined)) => line}
        })

        filteredDStream.print()

        ssc.start()
        ssc.awaitTermination()
        ssc.stop()  // stop中的boolean参数,设置为true,关闭该ssc对应的SparkContext,默认为false,只关闭自身
    }
}

nc中产生数据:

[uplooking@uplooking01 ~]$ nc -lk 4893
27.19.74.143##2016-05-30 17:38:20##GET /data/attachment/common/c8/common_2_verify_icon.png HTTP/1.1##200##582
110.52.250.126##2016-05-30 17:38:20##GET /static/js/logging.js?y7a HTTP/1.1##200##603
8.35.201.144##2016-05-30 17:38:20##GET /uc_server/avatar.php?uid=29331&size=middle HTTP/1.1##301##-

输出结果如下:

-------------------------------------------
Time: 1526006084000 ms
-------------------------------------------
8.35.201.144##2016-05-30 17:38:20##GET /uc_server/avatar.php?uid=29331&size=middle HTTP/1.1##301##-

transformation之updateStateByKey操作

概述

1、Spark Streaming的updateStateByKey可以DStream中的数据进行按key做reduce操作,然后对各个批次的数据进行累加。

2、 updateStateByKey 解释

以DStream中的数据进行按key做reduce操作,然后对各个批次的数据进行累加在有新的数据信息进入或更新时,可以让用户保持想要的任何状。使用这个功能需要完成两步:

1) 定义状态:可以是任意数据类型

2) 定义状态更新函数:用一个函数指定如何使用先前的状态,从输入流中的新值更新状态。对于有状态操作,要不断的把当前和历史的时间切片的RDD累加计算,随着时间的流失,计算的数据规模会变得越来越大

3、要思考的是如果数据量很大的时候,或者对性能的要求极为苛刻的情况下,可以考虑将数据放在Redis或者tachyon或者ignite上

4、注意,updateStateByKey操作,要求必须开启Checkpoint机制。

案例

Scala版

测试代码如下:

package cn.xpleaf.bigdata.spark.scala.streaming.p1

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 状态函数updateStateByKey
  *     更新key的状态(就是key对应的value)
  *
  * 通常的作用,计算某个key截止到当前位置的状态
  *     统计截止到目前为止的word对应count
  * 要想完成截止到目前为止的操作,必须将历史的数据和当前最新的数据累计起来,所以需要一个地方来存放历史数据
  * 这个地方就是checkpoint目录
  *
  */
object _07SparkStreamingUpdateStateByKeyOps {
    def main(args: Array[String]): Unit = {
        if (args == null || args.length < 2) {
            System.err.println(
                """Parameter Errors! Usage: <hostname> <port>
                  |hostname: 监听的网络socket的主机名或ip地址
                  |port:    监听的网络socket的端口
                """.stripMargin)
            System.exit(-1)
        }
        val hostname = args(0).trim
        val port = args(1).trim.toInt
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)

        val conf = new SparkConf()
            .setAppName(_07SparkStreamingUpdateStateByKeyOps.getClass.getSimpleName)
            .setMaster("local[2]")
        val ssc = new StreamingContext(conf, Seconds(2))

        ssc.checkpoint("hdfs://ns1/checkpoint/streaming/usb")

        // 接收到的当前批次的数据
        val linesDStream:ReceiverInputDStream[String] = ssc.socketTextStream(hostname, port)
        // 这是记录下来的当前批次的数据
        val rbkDStream:DStream[(String, Int)] =linesDStream.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)

        val usbDStream:DStream[(String, Int)]  = rbkDStream.updateStateByKey(updateFunc)

        usbDStream.print()

        ssc.start()
        ssc.awaitTermination()
        ssc.stop()  // stop中的boolean参数,设置为true,关闭该ssc对应的SparkContext,默认为false,只关闭自身
    }

    /**
      * @param seq 当前批次的key对应的数据
      * @param history 历史key对应的数据,可能有可能没有
      * @return
      */
    def updateFunc(seq: Seq[Int], history: Option[Int]): Option[Int] = {
        var sum = seq.sum
        if(history.isDefined) {
            sum += history.get
        }
        Option[Int](sum)
    }
}

nc产生数据:

[uplooking@uplooking01 ~]$ nc -lk 4893
hello hello
hello you hello he hello me

输出结果如下:

-------------------------------------------
Time: 1526009358000 ms
-------------------------------------------
(hello,2)

18/05/11 11:29:18 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://ns1/checkpoint/streaming/usb/receivedBlockMetadata older than 1526009338000: 
-------------------------------------------
Time: 1526009360000 ms
-------------------------------------------
(hello,5)
(me,1)
(you,1)
(he,1)

18/05/11 11:29:20 INFO WriteAheadLogManager  for Thread: Attempting to clear 0 old log files in hdfs://ns1/checkpoint/streaming/usb/receivedBlockMetadata older than 1526009340000: 
-------------------------------------------
Time: 1526009362000 ms
-------------------------------------------
(hello,5)
(me,1)
(you,1)
(he,1)
Java版

用法略有不同,主要是 状态更新函数的写法上有区别,如下:

package cn.xpleaf.bigdata.spark.java.streaming.p1;

import com.google.common.base.Optional;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;

import java.util.Arrays;
import java.util.List;

public class _02SparkStreamingUpdateStateByKeyOps {
    public static void main(String[] args) {
        if(args == null || args.length < 2) {
            System.err.println("Parameter Errors! Usage: <hostname> <port>");
            System.exit(-1);
        }
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF);
        SparkConf conf = new SparkConf()
                .setAppName(_02SparkStreamingUpdateStateByKeyOps.class.getSimpleName())
                .setMaster("local[2]");

        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(2));
        jsc.checkpoint("hdfs://ns1/checkpoint/streaming/usb");

        String hostname = args[0].trim();
        int port = Integer.valueOf(args[1].trim());
        JavaReceiverInputDStream<String> lineDStream = jsc.socketTextStream(hostname, port);//默认的持久化级别:MEMORY_AND_DISK_SER_2

        JavaDStream<String> wordsDStream = lineDStream.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterable<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" "));
            }
        });

        JavaPairDStream<String, Integer> pairsDStream = wordsDStream.mapToPair(word -> {
            return new Tuple2<String, Integer>(word, 1);
        });

        JavaPairDStream<String, Integer> rbkDStream = pairsDStream.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });

        // 做历史的累计操作
        JavaPairDStream<String, Integer> usbDStream = rbkDStream.updateStateByKey(new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
            @Override
            public Optional<Integer> call(List<Integer> current, Optional<Integer> history) throws Exception {

                int sum = 0;
                for (int i : current) {
                    sum += i;
                }

                if (history.isPresent()) {
                    sum += history.get();
                }
                return Optional.of(sum);
            }
        });

        usbDStream.print();

        jsc.start();//启动流式计算
        jsc.awaitTermination();//等待执行结束
        jsc.close();
    }
}

transformation之window操作

DStream window 滑动窗口

Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD。比如下图中,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算。所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动间隔,而且这两个参数值都必须是batch间隔的整数倍。

Spark Streaming笔记整理(三):DS的transformation与output操作

1.红色的矩形就是一个窗口,窗口hold的是一段时间内的数据流。

2.这里面每一个time都是时间单元,在官方的例子中,每隔window size是3 time unit, 而且每隔2个单位时间,窗口会slide一次。

所以基于窗口的操作,需要指定2个参数:

window length - The duration of the window (3 in the figure)
slide interval - The interval at which the window-based operation is performed (2 in the figure). 

1.窗口大小,个人感觉是一段时间内数据的容器。
2.滑动间隔,就是我们可以理解的cron表达式吧。
举个例子吧:
还是以最著名的wordcount举例,每隔10秒,统计一下过去30秒过来的数据。
// Reduce last 30 seconds of data, every 10 seconds  
val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _, Seconds(30), Seconds(10)) 

DSstream window滑动容器功能

window 对每个滑动窗口的数据执行自定义的计算
countByWindow 对每个滑动窗口的数据执行count操作
reduceByWindow 对每个滑动窗口的数据执行reduce操作
reduceByKeyAndWindow 对每个滑动窗口的数据执行reduceByKey操作
countByValueAndWindow 对每个滑动窗口的数据执行countByValue操作

案例

测试代码如下:

package cn.xpleaf.bigdata.spark.scala.streaming.p1

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  *窗口函数window
  *   每隔多长时间(滑动频率slideDuration)统计过去多长时间(窗口长度windowDuration)中的数据
  * 需要注意的就是窗口长度和滑动频率
  * windowDuration = M*batchInterval,
    slideDuration = N*batchInterval
  */
object _08SparkStreamingWindowOps {
    def main(args: Array[String]): Unit = {
        if (args == null || args.length < 2) {
            System.err.println(
                """Parameter Errors! Usage: <hostname> <port>
                  |hostname: 监听的网络socket的主机名或ip地址
                  |port:    监听的网络socket的端口
                """.stripMargin)
            System.exit(-1)
        }
        val hostname = args(0).trim
        val port = args(1).trim.toInt
        Logger.getLogger("org.apache.spark").setLevel(Level.OFF)

        val conf = new SparkConf()
            .setAppName(_08SparkStreamingWindowOps.getClass.getSimpleName)
            .setMaster("local[2]")
        val ssc = new StreamingContext(conf, Seconds(2))

        // 接收到的当前批次的数据
        val linesDStream:ReceiverInputDStream[String] = ssc.socketTextStream(hostname, port)
        val pairsDStream:DStream[(String, Int)] =linesDStream.flatMap(_.split(" ")).map((_, 1))

        // 每隔4s,统计过去6s中产生的数据
        val retDStream:DStream[(String, Int)] = pairsDStream.reduceByKeyAndWindow(_+_, windowDuration = Seconds(6), slideDuration = Seconds(4))

        retDStream.print()

        ssc.start()
        ssc.awaitTermination()
        ssc.stop()  // stop中的boolean参数,设置为true,关闭该ssc对应的SparkContext,默认为false,只关闭自身
    }
}

nc产生数据:

[uplooking@uplooking01 ~]$ nc -lk 4893
hello you
hello he
hello me
hello you
hello he

输出结果如下:

-------------------------------------------
Time: 1526016316000 ms
-------------------------------------------
(hello,4)
(me,1)
(you,2)
(he,1)

-------------------------------------------
Time: 1526016320000 ms
-------------------------------------------
(hello,5)
(me,1)
(you,2)
(he,2)

-------------------------------------------
Time: 1526016324000 ms
-------------------------------------------

DStream的output操作以及foreachRDD

DStream output操作

1、print 打印每个batch中的前10个元素,主要用于测试,或者是不需要执行什么output操作时,用于简单触发一下job。

2、saveAsTextFile(prefix, [suffix]) 将每个batch的数据保存到文件中。每个batch的文件的命名格式为:prefix-TIME_IN_MS[.suffix]

3、saveAsObjectFile 同上,但是将每个batch的数据以序列化对象的方式,保存到SequenceFile中。

4、saveAsHadoopFile 同上,将数据保存到Hadoop文件中

5、foreachRDD 最常用的output操作,遍历DStream中的每个产生的RDD,进行处理。可以将每个RDD中的数据写入外部存储,比如文件、数据库、缓存等。通常在其中,是针对RDD执行action操作的,比如foreach。

DStream foreachRDD详解

相关内容其实在Spark开发调优中已经有相关的说明。

通常在foreachRDD中,都会创建一个Connection,比如JDBC Connection,然后通过Connection将数据写入外部存储。

误区一:在RDD的foreach操作外部,创建Connection

这种方式是错误的,因为它会导致Connection对象被序列化后传输到每个Task中。而这种Connection对象,实际上一般是不支持序列化的,也就无法被传输。

dstream.foreachRDD { rdd =>
  val connection = createNewConnection() 
  rdd.foreach { record => connection.send(record)
  }
}
误区二:在RDD的foreach操作内部,创建Connection

这种方式是可以的,但是效率低下。因为它会导致对于RDD中的每一条数据,都创建一个Connection对象。而通常来说,Connection的创建,是很消耗性能的。

dstream.foreachRDD { rdd =>
  rdd.foreach { record =>
    val connection = createNewConnection()
    connection.send(record)
    connection.close()
  }
}
DStream foreachRDD合理使用

合理方式一:使用RDD的foreachPartition操作,并且在该操作内部,创建Connection对象,这样就相当于是,为RDD的每个partition创建一个Connection对象,节省资源的多了。

dstream.foreachRDD { rdd =>
  rdd.foreachPartition { partitionOfRecords =>
    val connection = createNewConnection()
    partitionOfRecords.foreach(record => connection.send(record))
    connection.close()
  }
}

合理方式二:自己手动封装一个静态连接池,使用RDD的foreachPartition操作,并且在该操作内部,从静态连接池中,通过静态方法,获取到一个连接,使用之后再还回去。这样的话,甚至在多个RDD的partition之间,也可以复用连接了。而且可以让连接池采取懒创建的策略,并且空闲一段时间后,将其释放掉。

dstream.foreachRDD { rdd =>
  rdd.foreachPartition { partitionOfRecords =>
    val connection = ConnectionPool.getConnection()
    partitionOfRecords.foreach(record => connection.send(record))
    ConnectionPool.returnConnection(connection)  
  }
}
foreachRDD 与foreachPartition实现实战

需要注意的是:

(1)、你最好使用forEachPartition函数来遍历RDD,并且在每台Work上面创建数据库的connection。

(2)、如果你的数据库并发受限,可以通过控制数据的分区来减少并发。

(3)、在插入MySQL的时候最好使用批量插入。

(4),确保你写入的数据库过程能够处理失败,因为你插入数据库的过程可能会经过网络,这可能导致数据插入数据库失败。

(5)、不建议将你的RDD数据写入到MySQL等关系型数据库中。

这部分内容其实可以参考开发调优部分的案例,只是那里并没有foreachRDD,因为其并没有使用DStream,但是原理是一样的,因为最终都是针对RDD来进行操作的。

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/193914.html

(0)
上一篇 2021年11月15日
下一篇 2021年11月15日

相关推荐

发表回复

登录后才能评论