本期内容:
-
Spark Streaming资源动态分配
-
Spark Streaming动态控制消费速率
为什么需要动态?
-
Spark默认情况下粗粒度的,先分配好资源再计算。而Spark Streaming有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量的资源浪费。
-
Spark Streaming不断的运行,对资源消耗和管理也是我们要考虑的因素。
-
Spark Streaming资源动态调整的时候会面临挑战:
-
Spark Streaming是按照Batch Duration运行的,Batch Duration需要很多资源,下一次Batch Duration就不需要那么多资源了,调整资源的时候还没调整完Batch Duration运行就已经过期了。这个时候调整时间间隔。
Spark Streaming资源动态申请
1. 在SparkContext中默认是不开启动态资源分配的,但是可以通过手动在SparkConf中配置。
// Optionally scale number of executors dynamically based on workload. Exposed for testing.val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)if (!dynamicAllocationEnabled && //参数配置是否开启资源动态分配_conf.getBoolean("spark.dynamicAllocation.enabled", false)) { logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.") } _executorAllocationManager = if (dynamicAllocationEnabled) { Some(new ExecutorAllocationManager(this, listenerBus, _conf)) } else { None } _executorAllocationManager.foreach(_.start())
-
ExecutorAllocationManager: 有定时器会不断的去扫描Executor的情况,正在运行的Stage,要运行在不同的Executor中,要么增加Executor或者减少。
-
ExecutorAllocationManager中schedule方法会被周期性触发进行资源动态调整。
/** * This is called at a fixed interval to regulate the number of pending executor requests * and number of executors running. * * First, adjust our requested executors based on the add time and our current needs. * Then, if the remove time for an existing executor has expired, kill the executor. * * This is factored out into its own method for testing. */private def schedule(): Unit = synchronized { val now = clock.getTimeMillis updateAndSyncNumExecutorsTarget(now) removeTimes.retain { case (executorId, expireTime) => val expired = now >= expireTime if (expired) { initializing = false removeExecutor(executorId) } !expired } }
-
在ExecutorAllocationManager中会在线程池中定时器会不断的运行schedule.
/** * Register for scheduler callbacks to decide when to add and remove executors, and start * the scheduling task. */def start(): Unit = { listenerBus.addListener(listener) val scheduleTask = new Runnable() { override def run(): Unit = { try { schedule() } catch { case ct: ControlThrowable => throw ct case t: Throwable => logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t) } } }// intervalMillis定时器触发时间 executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS) }
动态控制消费速率: Spark Streaming提供了一种弹性机制,流进来的速度和处理速度的关系,是否来得及处理数据。如果不能来得及的话,他会自动动态控制数据流进来的速度,spark.streaming.backpressure.enabled参数设置。
动态控制消费速率的原理可参考论文 Adaptive Stream Processing using Dynamic Batch Sizing
备注:
1、DT大数据梦工厂微信公众号DT_Spark
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/194224.html