设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代 码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用 设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决 方案,这也是它能被广泛应用的原因。
一、设计模式的分类
总体来说设计模式分为三大类:
创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:
二、Java的23中设计模式
从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。
1、工厂方法模式(Factory Method)
工厂方法模式分为三种:
11、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:
举例如下:(我们举一个发送邮件和短信的例子)
首先,创建二者的共同接口:
-
public interface Sender {
-
public void Send();
-
}
其次,创建实现类:
-
public class MailSender implements Sender {
-
@Override
-
public void Send() {
-
System.out.println(“this is mailsender!”);
-
}
-
}
-
public class SmsSender implements Sender {
-
-
@Override
-
public void Send() {
-
System.out.println(“this is sms sender!”);
-
}
-
}
最后,建工厂类:
-
public class SendFactory {
-
-
public Sender produce(String type) {
-
if (“mail”.equals(type)) {
-
return new MailSender();
-
} else if (“sms”.equals(type)) {
-
return new SmsSender();
-
} else {
-
System.out.println(“请输入正确的类型!”);
-
return null;
-
}
-
}
-
}
我们来测试下:
-
public class FactoryTest {
-
-
public static void main(String[] args) {
-
SendFactory factory = new SendFactory();
-
Sender sender = factory.produce(“sms”);
-
sender.Send();
-
}
-
}
输出:this is sms sender!
22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:
::__IHACKLOG_REMOTE_IMAGE_AUTODOWN_BLOCK__::2
将上面的代码做下修改,改动下SendFactory类就行,如下:
public class SendFactory {
public Sender produceMail(){
-
return new MailSender();
-
}
-
-
public Sender produceSms(){
-
return new SmsSender();
-
}
-
}
测试类如下:
-
public class FactoryTest {
-
-
public static void main(String[] args) {
-
SendFactory factory = new SendFactory();
-
Sender sender = factory.produceMail();
-
sender.Send();
-
}
-
}
输出:this is mailsender!
33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。
-
public class SendFactory {
-
-
public static Sender produceMail(){
-
return new MailSender();
-
}
-
-
public static Sender produceSms(){
-
return new SmsSender();
-
}
-
}
-
public class FactoryTest {
-
-
public static void main(String[] args) {
-
Sender sender = SendFactory.produceMail();
-
sender.Send();
-
}
-
}
输出:this is mailsender!
总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传 入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。
2、抽象工厂模式(Abstract Factory)
工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑, 有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象 工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。
请看例子:
-
public interface Sender {
-
public void Send();
-
}
两个实现类:
-
public class MailSender implements Sender {
-
@Override
-
public void Send() {
-
System.out.println(“this is mailsender!”);
-
}
-
}
-
public class SmsSender implements Sender {
-
-
@Override
-
public void Send() {
-
System.out.println(“this is sms sender!”);
-
}
-
}
两个工厂类:
-
public class SendMailFactory implements Provider {
-
-
@Override
-
public Sender produce(){
-
return new MailSender();
-
}
-
}
-
public class SendSmsFactory implements Provider{
-
-
@Override
-
public Sender produce() {
-
return new SmsSender();
-
}
-
}
在提供一个接口:
-
public interface Provider {
-
public Sender produce();
-
}
测试类:
-
public class Test {
-
-
public static void main(String[] args) {
-
Provider provider = new SendMailFactory();
-
Sender sender = provider.produce();
-
sender.Send();
-
}
-
}
其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!
3、单例模式(Singleton)
单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:
1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。
首先我们写一个简单的单例类:
-
public class Singleton {
-
-
/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
-
private static Singleton instance = null;
-
-
/* 私有构造方法,防止被实例化 */
-
private Singleton() {
-
}
-
-
/* 静态工程方法,创建实例 */
-
public static Singleton getInstance() {
-
if (instance == null) {
-
instance = new Singleton();
-
}
-
return instance;
-
}
-
-
/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
-
public Object readResolve() {
-
return instance;
-
}
-
}
这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:
-
public static synchronized Singleton getInstance() {
-
if (instance == null) {
-
instance = new Singleton();
-
}
-
return instance;
-
}
但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:
-
public static Singleton getInstance() {
-
if (instance == null) {
-
synchronized (instance) {
-
if (instance == null) {
-
instance = new Singleton();
-
}
-
}
-
}
-
return instance;
-
}
似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为 null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是 分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间, 然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:
a>A、B线程同时进入了第一个if判断
b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通经典框架中的设计模式JAVA 23种设计模式入门到精通
d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。
所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:
原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/197175.html