本期内容:
1、Executor的WAL容错机制
2、消息重放
Executor的安全容错主要是数据的安全容错,那为什么不考虑数据计算的安全容错呢?
原因是计算的时候Spark Streaming是借助于Spark Core上RDD的安全容错的,所以天然的安全可靠的。
Executor的安全容错主要有:
1、数据副本:
有两种方式:a.借助底层的BlockManager,BlockManager做备份,通过传入的StorageLevel进行备份。
b. WAL方式进行容错。
2、接受到数据之后,不做副本,但是数据源支持存放,所谓存放就是可以反复的读取源数据。
容错的弊端:耗时间、耗空间。
简单的看下源代码:
/** Store block and report it to driver */ def pushAndReportBlock( receivedBlock: ReceivedBlock, metadataOption: Option[Any], blockIdOption: Option[StreamBlockId] ) { val blockId = blockIdOption.getOrElse(nextBlockId) val time = System.currentTimeMillis val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock) logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms") val numRecords = blockStoreResult.numRecords val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult) trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo)) logDebug(s"Reported block $blockId") }
private val receivedBlockHandler: ReceivedBlockHandler = { if (WriteAheadLogUtils.enableReceiverLog(env.conf)) { if (checkpointDirOption.isEmpty) { throw new SparkException( "Cannot enable receiver write-ahead log without checkpoint directory set. " + "Please use streamingContext.checkpoint() to set the checkpoint directory. " + "See documentation for more details.") } new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId, receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get) //通过WAL容错 } else { new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel) //通过BlockManager进行容错 } }
def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = { var numRecords = None: Option[Long] val putResult: Seq[(BlockId, BlockStatus)] = block match { case ArrayBufferBlock(arrayBuffer) => numRecords = Some(arrayBuffer.size.toLong) blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel, tellMaster = true) case IteratorBlock(iterator) => val countIterator = new CountingIterator(iterator) val putResult = blockManager.putIterator(blockId, countIterator, storageLevel, tellMaster = true) numRecords = countIterator.count putResult case ByteBufferBlock(byteBuffer) => blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true) case o => throw new SparkException( s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}") } if (!putResult.map { _._1 }.contains(blockId)) { throw new SparkException( s"Could not store $blockId to block manager with storage level $storageLevel") } BlockManagerBasedStoreResult(blockId, numRecords) }
简单流程图:
参考博客:http://blog.csdn.net/hanburgud/article/details/51471089
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/198010.html