PostgreSQL中ExecHashJoin依赖其他函数的实现逻辑分析

这篇文章主要介绍“PostgreSQL中ExecHashJoin依赖其他函数的实现逻辑分析”,在日常操作中,相信很多人在PostgreSQL中ExecHashJoin依赖其他函数的实现逻辑分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PostgreSQL中ExecHashJoin依赖其他函数的实现逻辑分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

这些函数在HJ_NEED_NEW_OUTER阶段中使用,包括ExecHashJoinOuterGetTuple、ExecPrepHashTableForUnmatched、ExecHashGetBucketAndBatch、ExecHashGetSkewBucket、ExecHashJoinSaveTuple和ExecFetchSlotMinimalTuple等。

一、数据结构

Plan
所有计划节点通过将Plan结构作为第一个字段从Plan结构“派生”。这确保了在将节点转换为计划节点时,一切都能正常工作。(在执行器中以通用方式传递时,节点指针经常被转换为Plan *)

/* ----------------
 *      Plan node
 *
 * All plan nodes "derive" from the Plan structure by having the
 * Plan structure as the first field.  This ensures that everything works
 * when nodes are cast to Plan's.  (node pointers are frequently cast to Plan*
 * when passed around generically in the executor)
 * 所有计划节点通过将Plan结构作为第一个字段从Plan结构“派生”。
 * 这确保了在将节点转换为计划节点时,一切都能正常工作。
 * (在执行器中以通用方式传递时,节点指针经常被转换为Plan *)
 *
 * We never actually instantiate any Plan nodes; this is just the common
 * abstract superclass for all Plan-type nodes.
 * 从未实例化任何Plan节点;这只是所有Plan-type节点的通用抽象超类。
 * ----------------
 */
typedef struct Plan
{
    NodeTag     type;//节点类型

    /*
     * 成本估算信息;estimated execution costs for plan (see costsize.c for more info)
     */
    Cost        startup_cost;   /* 启动成本;cost expended before fetching any tuples */
    Cost        total_cost;     /* 总成本;total cost (assuming all tuples fetched) */

    /*
     * 优化器估算信息;planner's estimate of result size of this plan step
     */
    double      plan_rows;      /* 行数;number of rows plan is expected to emit */
    int         plan_width;     /* 平均行大小(Byte为单位);average row width in bytes */

    /*
     * 并行执行相关的信息;information needed for parallel query
     */
    bool        parallel_aware; /* 是否参与并行执行逻辑?engage parallel-aware logic? */
    bool        parallel_safe;  /* 是否并行安全;OK to use as part of parallel plan? */

    /*
     * Plan类型节点通用的信息.Common structural data for all Plan types.
     */
    int         plan_node_id;   /* unique across entire final plan tree */
    List       *targetlist;     /* target list to be computed at this node */
    List       *qual;           /* implicitly-ANDed qual conditions */
    struct Plan *lefttree;      /* input plan tree(s) */
    struct Plan *righttree;
    List       *initPlan;       /* Init Plan nodes (un-correlated expr
                                 * subselects) */

    /*
     * Information for management of parameter-change-driven rescanning
     * parameter-change-driven重扫描的管理信息.
     * 
     * extParam includes the paramIDs of all external PARAM_EXEC params
     * affecting this plan node or its children.  setParam params from the
     * node's initPlans are not included, but their extParams are.
     *
     * allParam includes all the extParam paramIDs, plus the IDs of local
     * params that affect the node (i.e., the setParams of its initplans).
     * These are _all_ the PARAM_EXEC params that affect this node.
     */
    Bitmapset  *extParam;
    Bitmapset  *allParam;
} Plan;

JoinState
Hash/NestLoop/Merge Join的基类

/* ----------------
 *   JoinState information
 *
 *      Superclass for state nodes of join plans.
 *      Hash/NestLoop/Merge Join的基类
 * ----------------
 */
typedef struct JoinState
{
    PlanState   ps;//基类PlanState
    JoinType    jointype;//连接类型
    //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T
    bool        single_match;   /* True if we should skip to next outer tuple
                                 * after finding one inner match */
    //连接条件表达式(除了ps.qual)
    ExprState  *joinqual;       /* JOIN quals (in addition to ps.qual) */
} JoinState;

HashJoinState
Hash Join运行期状态结构体

/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;

typedef struct HashJoinState
{
    JoinState   js;             /* 基类;its first field is NodeTag */
    ExprState  *hashclauses;//hash连接条件
    List       *hj_OuterHashKeys;   /* 外表条件链表;list of ExprState nodes */
    List       *hj_InnerHashKeys;   /* 内表连接条件;list of ExprState nodes */
    List       *hj_HashOperators;   /* 操作符OIDs链表;list of operator OIDs */
    HashJoinTable hj_HashTable;//Hash表
    uint32      hj_CurHashValue;//当前的Hash值
    int         hj_CurBucketNo;//当前的bucket编号
    int         hj_CurSkewBucketNo;//行倾斜bucket编号
    HashJoinTuple hj_CurTuple;//当前元组
    TupleTableSlot *hj_OuterTupleSlot;//outer relation slot
    TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot
    TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot
    TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot
    TupleTableSlot *hj_FirstOuterTupleSlot;//
    int         hj_JoinState;//JoinState状态
    bool        hj_MatchedOuter;//是否匹配
    bool        hj_OuterNotEmpty;//outer relation是否为空
} HashJoinState;

HashJoinTable
Hash表数据结构

typedef struct HashJoinTableData
{
    int         nbuckets;       /* 内存中的hash桶数;# buckets in the in-memory hash table */
    int         log2_nbuckets;  /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */
    int         nbuckets_original;  /* 首次hash时的桶数;# buckets when starting the first hash */
    int         nbuckets_optimal;   /* 优化后的桶数(每个批次);optimal # buckets (per batch) */
    int         log2_nbuckets_optimal;  /* 2的对数;log2(nbuckets_optimal) */
    /* buckets[i] is head of list of tuples in i'th in-memory bucket */
    //bucket [i]是内存中第i个桶中的元组链表的head item
    union
    {
        /* unshared array is per-batch storage, as are all the tuples */
        //未共享数组是按批处理存储的,所有元组均如此
        struct HashJoinTupleData **unshared;
        /* shared array is per-query DSA area, as are all the tuples */
        //共享数组是每个查询的DSA区域,所有元组均如此
        dsa_pointer_atomic *shared;
    }           buckets;
    bool        keepNulls;      /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */
    bool        skewEnabled;    /*是否使用倾斜优化?;are we using skew optimization? */
    HashSkewBucket **skewBucket;    /* 倾斜的hash表桶数;hashtable of skew buckets */
    int         skewBucketLen;  /* skewBucket数组大小;size of skewBucket array (a power of 2!) */
    int         nSkewBuckets;   /* 活动的倾斜桶数;number of active skew buckets */
    int        *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */
    int         nbatch;         /* 批次数;number of batches */
    int         curbatch;       /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */
    int         nbatch_original;    /* 在开始inner扫描时的批次;nbatch when we started inner scan */
    int         nbatch_outstart;    /* 在开始outer扫描时的批次;nbatch when we started outer scan */
    bool        growEnabled;    /* 关闭nbatch增加的标记;flag to shut off nbatch increases */
    double      totalTuples;    /* 从inner plan获得的元组数;# tuples obtained from inner plan */
    double      partialTuples;  /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */
    double      skewTuples;     /* 倾斜元组数;# tuples inserted into skew tuples */
    /*
     * These arrays are allocated for the life of the hash join, but only if
     * nbatch > 1.  A file is opened only when we first write a tuple into it
     * (otherwise its pointer remains NULL).  Note that the zero'th array
     * elements never get used, since we will process rather than dump out any
     * tuples of batch zero.
     * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。
     * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。
     * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储.
     */
    BufFile   **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */
    BufFile   **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */
    /*
     * Info about the datatype-specific hash functions for the datatypes being
     * hashed. These are arrays of the same length as the number of hash join
     * clauses (hash keys).
     * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。
     * 这些数组的长度与散列连接子句(散列键)的数量相同。
     */
    FmgrInfo   *outer_hashfunctions;    /* outer hash函数FmgrInfo结构体;lookup data for hash functions */
    FmgrInfo   *inner_hashfunctions;    /* inner hash函数FmgrInfo结构体;lookup data for hash functions */
    bool       *hashStrict;     /* 每个hash操作符是严格?is each hash join operator strict? */
    Size        spaceUsed;      /* 元组使用的当前内存空间大小;memory space currently used by tuples */
    Size        spaceAllowed;   /* 空间使用上限;upper limit for space used */
    Size        spacePeak;      /* 峰值的空间使用;peak space used */
    Size        spaceUsedSkew;  /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */
    Size        spaceAllowedSkew;   /* 倾斜哈希表的使用上限;upper limit for skew hashtable */
    MemoryContext hashCxt;      /* 整个散列连接存储的上下文;context for whole-hash-join storage */
    MemoryContext batchCxt;     /* 该批次存储的上下文;context for this-batch-only storage */
    /* used for dense allocation of tuples (into linked chunks) */
    //用于密集分配元组(到链接块中)
    HashMemoryChunk chunks;     /* 整个批次使用一个链表;one list for the whole batch */
    /* Shared and private state for Parallel Hash. */
    //并行hash使用的共享和私有状态
    HashMemoryChunk current_chunk;  /* 后台进程的当前chunk;this backend's current chunk */
    dsa_area   *area;           /* 用于分配内存的DSA区域;DSA area to allocate memory from */
    ParallelHashJoinState *parallel_state;//并行执行状态
    ParallelHashJoinBatchAccessor *batches;//并行访问器
    dsa_pointer current_chunk_shared;//当前chunk的开始指针
} HashJoinTableData;
typedef struct HashJoinTableData *HashJoinTable;

HashJoinTupleData
Hash连接元组数据

/* ----------------------------------------------------------------
 *              hash-join hash table structures
 *
 * Each active hashjoin has a HashJoinTable control block, which is
 * palloc'd in the executor's per-query context.  All other storage needed
 * for the hashjoin is kept in private memory contexts, two for each hashjoin.
 * This makes it easy and fast to release the storage when we don't need it
 * anymore.  (Exception: data associated with the temp files lives in the
 * per-query context too, since we always call buffile.c in that context.)
 * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。
 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。
 * 当不再需要它的时候,这使得释放它变得简单和快速。
 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。)
 *
 * The hashtable contexts are made children of the per-query context, ensuring
 * that they will be discarded at end of statement even if the join is
 * aborted early by an error.  (Likewise, any temporary files we make will
 * be cleaned up by the virtual file manager in event of an error.)
 * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。
 *   (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。)
 *
 * Storage that should live through the entire join is allocated from the
 * "hashCxt", while storage that is only wanted for the current batch is
 * allocated in the "batchCxt".  By resetting the batchCxt at the end of
 * each batch, we free all the per-batch storage reliably and without tedium.
 * 通过整个连接的存储空间应从“hashCxt”分配,而只需要当前批处理的存储空间在“batchCxt”中分配。
 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。
 * 
 * During first scan of inner relation, we get its tuples from executor.
 * If nbatch > 1 then tuples that don't belong in first batch get saved
 * into inner-batch temp files. The same statements apply for the
 * first scan of the outer relation, except we write tuples to outer-batch
 * temp files.  After finishing the first scan, we do the following for
 * each remaining batch:
 *  1. Read tuples from inner batch file, load into hash buckets.
 *  2. Read tuples from outer batch file, match to hash buckets and output.
 * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。
 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。
 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。
 * 完成第一次扫描后,我们对每批剩余的元组做如下处理: 
 * 1.从内部批处理文件读取元组,加载到散列桶中。
 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。 
 *
 * It is possible to increase nbatch on the fly if the in-memory hash table
 * gets too big.  The hash-value-to-batch computation is arranged so that this
 * can only cause a tuple to go into a later batch than previously thought,
 * never into an earlier batch.  When we increase nbatch, we rescan the hash
 * table and dump out any tuples that are now of a later batch to the correct
 * inner batch file.  Subsequently, while reading either inner or outer batch
 * files, we might find tuples that no longer belong to the current batch;
 * if so, we just dump them out to the correct batch file.
 * 如果内存中的哈希表太大,可以动态增加nbatch。
 * 散列值到批处理的计算是这样安排的:
 *   这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。
 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。
 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组;
 *   如果是这样,只需将它们转储到正确的批处理文件即可。
 * ----------------------------------------------------------------
 */
/* these are in nodes/execnodes.h: */
/* typedef struct HashJoinTupleData *HashJoinTuple; */
/* typedef struct HashJoinTableData *HashJoinTable; */
typedef struct HashJoinTupleData
{
    /* link to next tuple in same bucket */
    //link同一个桶中的下一个元组
    union
    {
        struct HashJoinTupleData *unshared;
        dsa_pointer shared;
    }           next;
    uint32      hashvalue;      /* 元组的hash值;tuple's hash code */
    /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */
}           HashJoinTupleData;
#define HJTUPLE_OVERHEAD  MAXALIGN(sizeof(HashJoinTupleData))
#define HJTUPLE_MINTUPLE(hjtup)  /
    ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))

二、源码解读

ExecHashJoinOuterGetTuple
获取非并行模式下hashjoin的下一个外部元组:要么在第一次执行外部plan节点,要么从hashjoin批处理的临时文件中获取。

/*----------------------------------------------------------------------------------------------------
                                    HJ_NEED_NEW_OUTER 阶段
----------------------------------------------------------------------------------------------------*/
/*
 * ExecHashJoinOuterGetTuple
 *
 *      get the next outer tuple for a parallel oblivious hashjoin: either by
 *      executing the outer plan node in the first pass, or from the temp
 *      files for the hashjoin batches.
 *      获取非并行模式下hashjoin的下一个外部元组:要么在第一次执行外部plan节点,要么从hashjoin批处理的临时文件中获取。
 *
 * Returns a null slot if no more outer tuples (within the current batch).
 * 如果没有更多外部元组(在当前批处理中),则返回空slot。
 *
 * On success, the tuple's hash value is stored at *hashvalue --- this is
 * either originally computed, or re-read from the temp file.
 * 如果成功,tuple的散列值存储在输入参数*hashvalue中——这是最初计算的,或者是从临时文件中重新读取的。
 */
static TupleTableSlot *
ExecHashJoinOuterGetTuple(PlanState *outerNode,//outer 节点
                          HashJoinState *hjstate,//Hash Join执行状态
                          uint32 *hashvalue)//Hash值
{
    HashJoinTable hashtable = hjstate->hj_HashTable;//hash表
    int         curbatch = hashtable->curbatch;//当前批次
    TupleTableSlot *slot;//返回的slot
    if (curbatch == 0)          /* 第一个批次;if it is the first pass */
    {
        /*
         * Check to see if first outer tuple was already fetched by
         * ExecHashJoin() and not used yet.
         * 检查第一个外部元组是否已经由ExecHashJoin()函数获取且尚未使用。
         */
        slot = hjstate->hj_FirstOuterTupleSlot;
        if (!TupIsNull(slot))
            hjstate->hj_FirstOuterTupleSlot = NULL;//重置slot
        else
            slot = ExecProcNode(outerNode);//如为NULL,则获取slot
        while (!TupIsNull(slot))//slot不为NULL
        {
            /*
             * We have to compute the tuple's hash value.
             * 计算hash值
             */
            ExprContext *econtext = hjstate->js.ps.ps_ExprContext;//表达式计算上下文
            econtext->ecxt_outertuple = slot;//存储获取的slot
            if (ExecHashGetHashValue(hashtable, econtext,
                                     hjstate->hj_OuterHashKeys,
                                     true,  /* outer tuple */
                                     HJ_FILL_OUTER(hjstate),
                                     hashvalue))//计算Hash值
            {
                /* remember outer relation is not empty for possible rescan */
                hjstate->hj_OuterNotEmpty = true;//设置标记(outer不为空)
                return slot;//返回匹配的slot
            }
            /*
             * That tuple couldn't match because of a NULL, so discard it and
             * continue with the next one.
             * 该元组无法匹配,丢弃它,继续下一个元组。
             */
            slot = ExecProcNode(outerNode);//继续获取下一个
        }
    }
    else if (curbatch < hashtable->nbatch)//不是第一个批次
    {
        BufFile    *file = hashtable->outerBatchFile[curbatch];//获取缓冲的文件
        /*
         * In outer-join cases, we could get here even though the batch file
         * is empty.
         * 在外连接的情况下,即使批处理文件是空的,也可以在这里进行处理。
         */
        if (file == NULL)
            return NULL;//如文件为NULL,则返回
        slot = ExecHashJoinGetSavedTuple(hjstate,
                                         file,
                                         hashvalue,
                                         hjstate->hj_OuterTupleSlot);//从文件中获取slot
        if (!TupIsNull(slot))
            return slot;//非NULL,则返回
    }
    /* End of this batch */
    //已完成,则返回NULL
    return NULL;
}
/*
 * ExecHashGetHashValue
 *      Compute the hash value for a tuple
 *      ExecHashGetHashValue - 计算元组的Hash值
 *
 * The tuple to be tested must be in either econtext->ecxt_outertuple or
 * econtext->ecxt_innertuple.  Vars in the hashkeys expressions should have
 * varno either OUTER_VAR or INNER_VAR.
 * 要测试的元组必须位于econtext->ecxt_outertuple或econtext->ecxt_innertuple中。
 * hashkeys表达式中的Vars应该具有varno,即OUTER_VAR或INNER_VAR。
 *
 * A true result means the tuple's hash value has been successfully computed
 * and stored at *hashvalue.  A false result means the tuple cannot match
 * because it contains a null attribute, and hence it should be discarded
 * immediately.  (If keep_nulls is true then false is never returned.)
 * T意味着tuple的散列值已经成功计算并存储在*hashvalue参数中。
 * F意味着元组不能匹配,因为它包含null属性,因此应该立即丢弃它。
 * (如果keep_nulls为真,则永远不会返回F。)
 */
bool
ExecHashGetHashValue(HashJoinTable hashtable,//Hash表
                     ExprContext *econtext,//上下文
                     List *hashkeys,//Hash键值链表
                     bool outer_tuple,//是否外表元组
                     bool keep_nulls,//是否保存NULL
                     uint32 *hashvalue)//返回的Hash值
{
    uint32      hashkey = 0;//hash键
    FmgrInfo   *hashfunctions;//hash函数
    ListCell   *hk;//临时变量
    int         i = 0;
    MemoryContext oldContext;
    /*
     * We reset the eval context each time to reclaim any memory leaked in the
     * hashkey expressions.
     * 我们每次重置eval上下文来回收hashkey表达式中分配的内存。
     */
    ResetExprContext(econtext);
    //切换上下文
    oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
    if (outer_tuple)
        hashfunctions = hashtable->outer_hashfunctions;//外表元组
    else
        hashfunctions = hashtable->inner_hashfunctions;//内表元组
    foreach(hk, hashkeys)//遍历Hash键值
    {
        ExprState  *keyexpr = (ExprState *) lfirst(hk);//键值表达式
        Datum       keyval;
        bool        isNull;
        /* rotate hashkey left 1 bit at each step */
        //哈希键左移1位
        hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
        /*
         * Get the join attribute value of the tuple
         * 获取元组的连接属性值
         */
        keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
        /*
         * If the attribute is NULL, and the join operator is strict, then
         * this tuple cannot pass the join qual so we can reject it
         * immediately (unless we're scanning the outside of an outer join, in
         * which case we must not reject it).  Otherwise we act like the
         * hashcode of NULL is zero (this will support operators that act like
         * IS NOT DISTINCT, though not any more-random behavior).  We treat
         * the hash support function as strict even if the operator is not.
         * 如果属性为NULL,并且join操作符是严格的,那么这个元组不能传递连接条件join qual,
         *   因此可以立即拒绝它(除非正在扫描外连接的外表,在这种情况下不能拒绝它)。
         * 否则,我们的行为就好像NULL的哈希码是零一样(这将支持IS NOT DISTINCT操作符,但不会有任何随机的情况出现)。
         * 即使操作符不是严格的,也将哈希函数视为严格的。
         *
         * Note: currently, all hashjoinable operators must be strict since
         * the hash index AM assumes that.  However, it takes so little extra
         * code here to allow non-strict that we may as well do it.
         * 注意:目前,所有哈希可连接操作符都必须严格,因为哈希索引AM假定如此。
         *      但是,这里只需要很少的额外代码就可以实现非严格性,我们也可以这样做。
         */
        if (isNull)
        {
            //NULL值
            if (hashtable->hashStrict[i] && !keep_nulls)
            {
                MemoryContextSwitchTo(oldContext);
                //不保持NULL值,不匹配
                return false;   /* cannot match */
            }
            /* else, leave hashkey unmodified, equivalent to hashcode 0 */
            //否则的话,不修改hashkey,仍为0
        }
        else
        {
            //不为NULL
            /* Compute the hash function */
            //计算hash值
            uint32      hkey;
            hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i], keyval));
            hashkey ^= hkey;
        }
        i++;//下一个键
    }
    //切换上下文
    MemoryContextSwitchTo(oldContext);
    //返回Hash键值
    *hashvalue = hashkey;
    return true;//成功获取
}

ExecPrepHashTableForUnmatched
为ExecScanHashTableForUnmatched函数调用作准备

/*
 * ExecPrepHashTableForUnmatched
 *      set up for a series of ExecScanHashTableForUnmatched calls
 *      为ExecScanHashTableForUnmatched函数调用作准备
 */
void
ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
{
    /*----------
     * During this scan we use the HashJoinState fields as follows:
     *
     * hj_CurBucketNo: next regular bucket to scan
     * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
     * hj_CurTuple: last tuple returned, or NULL to start next bucket
     * 在这次扫描期间,我们使用HashJoinState结构体中的字段如下:
     * hj_CurBucketNo: 下一个常规的bucket
     * hj_CurSkewBucketNo: 下一个个倾斜的bucket
     * hj_CurTuple: 最后返回的元组,或者为NULL(下一个bucket开始)
     *----------
     */
    hjstate->hj_CurBucketNo = 0;
    hjstate->hj_CurSkewBucketNo = 0;
    hjstate->hj_CurTuple = NULL;
}

ExecHashGetBucketAndBatch
确定哈希值的bucket号和批处理号

/*
 * ExecHashGetBucketAndBatch
 *      Determine the bucket number and batch number for a hash value
 * ExecHashGetBucketAndBatch
 *      确定哈希值的bucket号和批处理号
 * 
 * Note: on-the-fly increases of nbatch must not change the bucket number
 * for a given hash code (since we don't move tuples to different hash
 * chains), and must only cause the batch number to remain the same or
 * increase.  Our algorithm is
 *      bucketno = hashvalue MOD nbuckets
 *      batchno = (hashvalue DIV nbuckets) MOD nbatch
 * where nbuckets and nbatch are both expected to be powers of 2, so we can
 * do the computations by shifting and masking.  (This assumes that all hash
 * functions are good about randomizing all their output bits, else we are
 * likely to have very skewed bucket or batch occupancy.)
 * 注意:nbatch的动态增加不能更改给定哈希码的桶号(因为我们不将元组移动到不同的哈希链),
 *   并且只能使批号保持不变或增加。我们的算法是:
 *      bucketno = hashvalue MOD nbuckets
 *      batchno = (hashvalue DIV nbuckets) MOD nbatch
 * 这里nbucket和nbatch都是2的幂,所以我们可以通过移动和屏蔽来进行计算。
 * (这假定所有哈希函数都能很好地随机化它们的所有输出位,否则很可能会出现非常倾斜的桶或批处理占用。)
 *
 * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
 * bucket count growth.  Once we start batching, the value is fixed and does
 * not change over the course of the join (making it possible to compute batch
 * number the way we do here).
 * 当nbatch == 1时,由于动态bucket计数的增长,nbucket和log2_nbucket可能会发生变化。
 * 一旦开始批处理,这个值就固定了,并且在连接过程中不会改变(这使得我们可以像这里那样计算批号)。
 *
 * nbatch is always a power of 2; we increase it only by doubling it.  This
 * effectively adds one more bit to the top of the batchno.
 * nbatch总是2的幂;我们只是通过x2来调整。这相当于为批号的头部增加了一位。
 */
void
ExecHashGetBucketAndBatch(HashJoinTable hashtable,
                          uint32 hashvalue,
                          int *bucketno,
                          int *batchno)
{
    uint32      nbuckets = (uint32) hashtable->nbuckets;//桶数
    uint32      nbatch = (uint32) hashtable->nbatch;//批次号
    if (nbatch > 1)//批次>1
    {
        /* we can do MOD by masking, DIV by shifting */
        //我们可以通过屏蔽来实现MOD,通过移动来实现DIV
        *bucketno = hashvalue & (nbuckets - 1);//nbuckets - 1后相当于N个1
        *batchno = (hashvalue >> hashtable->log2_nbuckets) & (nbatch - 1);
    }
    else
    {
        *bucketno = hashvalue & (nbuckets - 1);//只有一个批次,简单处理即可
        *batchno = 0;
    }
}

ExecHashGetSkewBucket
返回这个哈希值的倾斜桶的索引,如果哈希值与任何活动的倾斜桶没有关联,则返回INVALID_SKEW_BUCKET_NO。

/*
 * ExecHashGetSkewBucket
 *
 *      Returns the index of the skew bucket for this hashvalue,
 *      or INVALID_SKEW_BUCKET_NO if the hashvalue is not
 *      associated with any active skew bucket.
 *      返回这个哈希值的倾斜桶的索引,如果哈希值与任何活动的倾斜桶没有关联,则返回INVALID_SKEW_BUCKET_NO。
 */
int
ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
{
    int         bucket;
    /*
     * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
     * particular, this happens after the initial batch is done).
     * 如果不进行倾斜优化(特别是在初始批处理完成之后),则返回INVALID_SKEW_BUCKET_NO。
     */
    if (!hashtable->skewEnabled)
        return INVALID_SKEW_BUCKET_NO;
    /*
     * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.'
     * 由于skewBucketLen是2的幂,可以通过AND操作来做一个模。
     */
    bucket = hashvalue & (hashtable->skewBucketLen - 1);
    /*
     * While we have not hit a hole in the hashtable and have not hit the
     * desired bucket, we have collided with some other hash value, so try the
     * next bucket location.
     * 虽然我们没有在哈希表中找到一个hole,也没有找到所需的bucket,
     *   但是与其他一些哈希值发生了冲突,所以尝试下一个bucket位置。
     */
    while (hashtable->skewBucket[bucket] != NULL &&
           hashtable->skewBucket[bucket]->hashvalue != hashvalue)
        bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
    /*
     * Found the desired bucket?
     * 找到了bucket,返回
     */
    if (hashtable->skewBucket[bucket] != NULL)
        return bucket;
    /*
     * There must not be any hashtable entry for this hash value.
     */
    //否则返回INVALID_SKEW_BUCKET_NO
    return INVALID_SKEW_BUCKET_NO;
}

ExecHashJoinSaveTuple
在批处理文件中保存元组.每个元组在文件中记录的是它的散列值,然后是最小化格式的元组。

/*
 * ExecHashJoinSaveTuple
 *      save a tuple to a batch file.
 *      在批处理文件中保存元组
 * 
 * The data recorded in the file for each tuple is its hash value,
 * then the tuple in MinimalTuple format.
 * 每个元组在文件中记录的是它的散列值,然后是最小化格式的元组。
 * 
 * Note: it is important always to call this in the regular executor
 * context, not in a shorter-lived context; else the temp file buffers
 * will get messed up.
 * 注意:在常规执行程序上下文中调用它总是很重要的,而不是在较短的生命周期中调用它;
 *   否则临时文件缓冲区就会出现混乱。
 */
void
ExecHashJoinSaveTuple(MinimalTuple tuple, uint32 hashvalue,
                      BufFile **fileptr)
{
    BufFile    *file = *fileptr;//文件指针
    size_t      written;//写入大小
    if (file == NULL)
    {
        /* First write to this batch file, so open it. */
        //文件指针为NULL,首次写入,则打开批处理文件
        file = BufFileCreateTemp(false);
        *fileptr = file;
    }
    //首先写入hash值,返回写入的大小
    written = BufFileWrite(file, (void *) &hashvalue, sizeof(uint32));
    if (written != sizeof(uint32))//写入有误,报错
        ereport(ERROR,
                (errcode_for_file_access(),
                 errmsg("could not write to hash-join temporary file: %m")));
    //写入tuple
    written = BufFileWrite(file, (void *) tuple, tuple->t_len);
    if (written != tuple->t_len)//写入有误,报错
        ereport(ERROR,
                (errcode_for_file_access(),
                 errmsg("could not write to hash-join temporary file: %m")));
}

ExecFetchSlotMinimalTuple
以最小化物理元组的格式提取slot的数据

/* --------------------------------
 *      ExecFetchSlotMinimalTuple
 *          Fetch the slot's minimal physical tuple.
 *          以最小化物理元组的格式提取slot的数据.
 *
 *      If the given tuple table slot can hold a minimal tuple, indicated by a
 *      non-NULL get_minimal_tuple callback, the function returns the minimal
 *      tuple returned by that callback. It assumes that the minimal tuple
 *      returned by the callback is "owned" by the slot i.e. the slot is
 *      responsible for freeing the memory consumed by the tuple. Hence it sets
 *      *shouldFree to false, indicating that the caller should not free the
 *      memory consumed by the minimal tuple. In this case the returned minimal
 *      tuple should be considered as read-only.
 *      如果给定的元组table slot可以保存由non-NULL get_minimal_tuple回调函数指示的最小元组,
 *        则函数将返回该回调函数返回的最小元组。
 *      它假定回调函数返回的最小元组由slot“拥有”,即slot负责释放元组所消耗的内存。
 *      因此,它将*shouldFree设置为false,表示调用方不应该释放内存。
 *      在这种情况下,返回的最小元组应该被认为是只读的。
 *
 *      If that callback is not supported, it calls copy_minimal_tuple callback
 *      which is expected to return a copy of minimal tuple represnting the
 *      contents of the slot. In this case *shouldFree is set to true,
 *      indicating the caller that it should free the memory consumed by the
 *      minimal tuple. In this case the returned minimal tuple may be written
 *      up.
 *      如果不支持该回调函数,则调用copy_minimal_tuple回调函数,
 *        该回调将返回一个表示slot内容的最小元组副本。
 *      *shouldFree被设置为true,这表示调用者应该释放内存。
 *      在这种情况下,可以写入返回的最小元组。
 * --------------------------------
 */
MinimalTuple
ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
                          bool *shouldFree)
{
    /*
     * sanity checks
     * 安全检查
     */
    Assert(slot != NULL);
    Assert(!TTS_EMPTY(slot));
    if (slot->tts_ops->get_minimal_tuple)//调用slot->tts_ops->get_minimal_tuple
    {
        //调用成功,则该元组为只读,由slot负责释放
        if (shouldFree)
            *shouldFree = false;
        return slot->tts_ops->get_minimal_tuple(slot);
    }
    else
    {
        //调用不成功,设置为true,由调用方释放
        if (shouldFree)
            *shouldFree = true;
        return slot->tts_ops->copy_minimal_tuple(slot);//调用copy_minimal_tuple函数
    }
}

三、跟踪分析

测试脚本如下

testdb=# set enable_nestloop=false;
SET
testdb=# set enable_mergejoin=false;
SET
testdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je 
testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je 
testdb(#                         from t_grxx gr inner join t_jfxx jf 
testdb(#                                        on gr.dwbh = dw.dwbh 
testdb(#                                           and gr.grbh = jf.grbh) grjf
testdb-# order by dw.dwbh;
                                          QUERY PLAN                                           
-----------------------------------------------------------------------------------------------
 Sort  (cost=14828.83..15078.46 rows=99850 width=47)
   Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
   Sort Key: dw.dwbh
   ->  Hash Join  (cost=3176.00..6537.55 rows=99850 width=47)
         Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
         Hash Cond: ((gr.grbh)::text = (jf.grbh)::text)
         ->  Hash Join  (cost=289.00..2277.61 rows=99850 width=32)
               Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm
               Inner Unique: true
               Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text)
               ->  Seq Scan on public.t_grxx gr  (cost=0.00..1726.00 rows=100000 width=16)
                     Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl
               ->  Hash  (cost=164.00..164.00 rows=10000 width=20)
                     Output: dw.dwmc, dw.dwbh, dw.dwdz
                     ->  Seq Scan on public.t_dwxx dw  (cost=0.00..164.00 rows=10000 width=20)
                           Output: dw.dwmc, dw.dwbh, dw.dwdz
         ->  Hash  (cost=1637.00..1637.00 rows=100000 width=20)
               Output: jf.ny, jf.je, jf.grbh
               ->  Seq Scan on public.t_jfxx jf  (cost=0.00..1637.00 rows=100000 width=20)
                     Output: jf.ny, jf.je, jf.grbh
(20 rows)

启动gdb,设置断点

(gdb) b ExecHashJoinOuterGetTuple
Breakpoint 1 at 0x702edc: file nodeHashjoin.c, line 807.
(gdb) b ExecHashGetHashValue
Breakpoint 2 at 0x6ff060: file nodeHash.c, line 1778.
(gdb) b ExecHashGetBucketAndBatch
Breakpoint 3 at 0x6ff1df: file nodeHash.c, line 1880.
(gdb) b ExecHashJoinSaveTuple
Breakpoint 4 at 0x703973: file nodeHashjoin.c, line 1214.
(gdb)

ExecHashGetHashValue
ExecHashGetHashValue->进入函数ExecHashGetHashValue

(gdb) c
Continuing.
Breakpoint 2, ExecHashGetHashValue (hashtable=0x14acde8, econtext=0x149c3d0, hashkeys=0x14a8e40, outer_tuple=false, 
    keep_nulls=false, hashvalue=0x7ffc7eba5c20) at nodeHash.c:1778
1778        uint32      hashkey = 0;

ExecHashGetHashValue->初始化,切换内存上下文

1778        uint32      hashkey = 0;
(gdb) n
1781        int         i = 0;
(gdb) 
1788        ResetExprContext(econtext);
(gdb) 
1790        oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
(gdb) 
1792        if (outer_tuple)

ExecHashGetHashValue->inner hash函数

1792        if (outer_tuple)
(gdb) 
1795            hashfunctions = hashtable->inner_hashfunctions;

ExecHashGetHashValue->获取hahs键信息
1号RTE(varnoold = 1,即t_dwxx)的dwbh字段(varattno = 2)

(gdb) 
1797        foreach(hk, hashkeys)
(gdb) 
1799            ExprState  *keyexpr = (ExprState *) lfirst(hk);
(gdb) 
1804            hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
(gdb) p *keyexpr
$1 = {tag = {type = T_ExprState}, flags = 2 '/002', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x14a8a00, 
  evalfunc = 0x6d1a6e <ExecInterpExprStillValid>, expr = 0x1498fc0, evalfunc_private = 0x6d1e97 <ExecJustInnerVar>, 
  steps_len = 3, steps_alloc = 16, parent = 0x149b738, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0, 
  innermost_domainval = 0x0, innermost_domainnull = 0x0}
(gdb) p *(RelabelType *)keyexpr->expr
$3 = {xpr = {type = T_RelabelType}, arg = 0x1499018, resulttype = 25, resulttypmod = -1, resultcollid = 100, 
  relabelformat = COERCE_IMPLICIT_CAST, location = -1}
(gdb) p *((RelabelType *)keyexpr->expr)->arg
$4 = {type = T_Var}
(gdb) p *(Var *)((RelabelType *)keyexpr->expr)->arg
$5 = {xpr = {type = T_Var}, varno = 65000, varattno = 2, vartype = 1043, vartypmod = 24, varcollid = 100, varlevelsup = 0, 
  varnoold = 1, varoattno = 2, location = 218}
(gdb)

ExecHashGetHashValue->获取hash值,解析表达式

(gdb) n
1809            keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
(gdb) 
1824            if (isNull)
(gdb) p hashkey
$6 = 0
(gdb) p keyval
$7 = 140460362257270
(gdb)

ExecHashGetHashValue->返回值不为NULL

(gdb) p isNull
$8 = false
(gdb) n
1838                hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i], keyval));

ExecHashGetHashValue->计算Hash值

(gdb) n
1839                hashkey ^= hkey;
(gdb) p hkey
$9 = 3663833849
(gdb) p hashkey
$10 = 0
(gdb) n
1842            i++;
(gdb) p hashkey
$11 = 3663833849
(gdb)

ExecHashGetHashValue->返回计算结果

(gdb) n
1797        foreach(hk, hashkeys)
(gdb) 
1845        MemoryContextSwitchTo(oldContext);
(gdb) 
1847        *hashvalue = hashkey;
(gdb) 
1848        return true;
(gdb) 
1849    }

ExecHashGetBucketAndBatch
ExecHashGetBucketAndBatch->进入ExecHashGetBucketAndBatch

(gdb) c
Continuing.
Breakpoint 3, ExecHashGetBucketAndBatch (hashtable=0x14acde8, hashvalue=3663833849, bucketno=0x7ffc7eba5bdc, 
    batchno=0x7ffc7eba5bd8) at nodeHash.c:1880
1880        uint32      nbuckets = (uint32) hashtable->nbuckets;

ExecHashGetBucketAndBatch->获取bucket数和批次数

1880        uint32      nbuckets = (uint32) hashtable->nbuckets;
(gdb) n
1881        uint32      nbatch = (uint32) hashtable->nbatch;
(gdb) 
1883        if (nbatch > 1)
(gdb) p nbuckets
$12 = 16384
(gdb) p nbatch
$13 = 1
(gdb)

ExecHashGetBucketAndBatch->计算桶号和批次号(只有一个批次,设置为0)

(gdb) n
1891            *bucketno = hashvalue & (nbuckets - 1);
(gdb) 
1892            *batchno = 0;
(gdb) 
1894    }
(gdb) p bucketno
$14 = (int *) 0x7ffc7eba5bdc
(gdb) p *bucketno
$15 = 11001
(gdb)

ExecHashJoinOuterGetTuple
ExecHashJoinOuterGetTuple->进入ExecHashJoinOuterGetTuple函数

(gdb) info break
Num     Type           Disp Enb Address            What
1       breakpoint     keep y   0x0000000000702edc in ExecHashJoinOuterGetTuple at nodeHashjoin.c:807
2       breakpoint     keep y   0x00000000006ff060 in ExecHashGetHashValue at nodeHash.c:1778
    breakpoint already hit 4 times
3       breakpoint     keep y   0x00000000006ff1df in ExecHashGetBucketAndBatch at nodeHash.c:1880
    breakpoint already hit 4 times
4       breakpoint     keep y   0x0000000000703973 in ExecHashJoinSaveTuple at nodeHashjoin.c:1214
(gdb) del 2
(gdb) del 3
(gdb) c
Continuing.
Breakpoint 1, ExecHashJoinOuterGetTuple (outerNode=0x149ba10, hjstate=0x149b738, hashvalue=0x7ffc7eba5ccc)
    at nodeHashjoin.c:807
807     HashJoinTable hashtable = hjstate->hj_HashTable;
(gdb)

ExecHashJoinOuterGetTuple->查看输入参数
outerNode:outer relation为顺序扫描得到的relation(对t_jfxx进行顺序扫描)
hjstate:Hash Join执行状态
hashvalue:Hash值

(gdb) p *outerNode
$16 = {type = T_SeqScanState, plan = 0x1494d10, state = 0x149b0f8, ExecProcNode = 0x71578d <ExecSeqScan>, 
  ExecProcNodeReal = 0x71578d <ExecSeqScan>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, 
  qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, 
  ps_ResultTupleSlot = 0x149c178, ps_ExprContext = 0x149bb28, ps_ProjInfo = 0x0, scandesc = 0x7fbfa69a8308}
(gdb) p *hjstate
$17 = {js = {ps = {type = T_HashJoinState, plan = 0x1496d18, state = 0x149b0f8, ExecProcNode = 0x70291d <ExecHashJoin>, 
      ExecProcNodeReal = 0x70291d <ExecHashJoin>, instrument = 0x0, worker_instrument = 0x0, worker_jit_instrument = 0x0, 
      qual = 0x0, lefttree = 0x149ba10, righttree = 0x149c2b8, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, 
      ps_ResultTupleSlot = 0x14a7498, ps_ExprContext = 0x149b950, ps_ProjInfo = 0x149cef0, scandesc = 0x0}, 
    jointype = JOIN_INNER, single_match = true, joinqual = 0x0}, hashclauses = 0x14a7b30, hj_OuterHashKeys = 0x14a8930, 
  hj_InnerHashKeys = 0x14a8e40, hj_HashOperators = 0x14a8ea0, hj_HashTable = 0x14acde8, hj_CurHashValue = 0, 
  hj_CurBucketNo = 0, hj_CurSkewBucketNo = -1, hj_CurTuple = 0x0, hj_OuterTupleSlot = 0x14a79f0, 
  hj_HashTupleSlot = 0x149cc18, hj_NullOuterTupleSlot = 0x0, hj_NullInnerTupleSlot = 0x0, 
  hj_FirstOuterTupleSlot = 0x149bbe8, hj_JoinState = 2, hj_MatchedOuter = false, hj_OuterNotEmpty = false}
(gdb) p *hashvalue
$18 = 32703
(gdb)

ExecHashJoinOuterGetTuple->只有一个批次,批次号为0

(gdb) n
808     int         curbatch = hashtable->curbatch;
(gdb) 
811     if (curbatch == 0)          /* if it is the first pass */
(gdb) p curbatch
$20 = 0

ExecHashJoinOuterGetTuple->获取首个outer tuple slot(不为NULL),重置hjstate->hj_FirstOuterTupleSlot为NULL

(gdb) n
817         slot = hjstate->hj_FirstOuterTupleSlot;
(gdb) 
818         if (!TupIsNull(slot))
(gdb) p *slot
$21 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = false, 
  tts_tuple = 0x14ac200, tts_tupleDescriptor = 0x7fbfa69a8308, tts_mcxt = 0x149afe0, tts_buffer = 345, tts_nvalid = 0, 
  tts_values = 0x149bc48, tts_isnull = 0x149bc70, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {
        bi_hi = 0, bi_lo = 0}, ip_posid = 0}, t_tableOid = 0, t_data = 0x0}, tts_off = 0, tts_fixedTupleDescriptor = true}
(gdb) 
(gdb) n
819             hjstate->hj_FirstOuterTupleSlot = NULL;
(gdb)

ExecHashJoinOuterGetTuple->循环获取,找到匹配的slot

(gdb) 
823         while (!TupIsNull(slot))
(gdb) n
828             ExprContext *econtext = hjstate->js.ps.ps_ExprContext;
(gdb)

ExecHashJoinOuterGetTuple->成功匹配,返回slot

(gdb) n
830             econtext->ecxt_outertuple = slot;
(gdb) 
834                                      HJ_FILL_OUTER(hjstate),
(gdb) 
831             if (ExecHashGetHashValue(hashtable, econtext,
(gdb) 
838                 hjstate->hj_OuterNotEmpty = true;
(gdb) 
840                 return slot;
(gdb) p *slot
$22 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = true, 
  tts_tuple = 0x14ac200, tts_tupleDescriptor = 0x7fbfa69a8308, tts_mcxt = 0x149afe0, tts_buffer = 345, tts_nvalid = 1, 
  tts_values = 0x149bc48, tts_isnull = 0x149bc70, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {
        bi_hi = 0, bi_lo = 0}, ip_posid = 0}, t_tableOid = 0, t_data = 0x0}, tts_off = 2, tts_fixedTupleDescriptor = true}
(gdb)

到此,关于“PostgreSQL中ExecHashJoin依赖其他函数的实现逻辑分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

原创文章,作者:kepupublish,如若转载,请注明出处:https://blog.ytso.com/205019.html

(0)
上一篇 2021年11月29日
下一篇 2021年11月29日

相关推荐

发表回复

登录后才能评论