这篇文章主要讲解了“PostgreSQL的set_base_rel_pathlists函数及其子函数分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PostgreSQL的set_base_rel_pathlists函数及其子函数分析”吧!
set_base_rel_pathlists函数的目的是为每一个base rel找出所有可用的访问路径(包括顺序扫描和所有可用的索引),每一个可用的路径都会添加到pathlist链表中。这一小节主要介绍常规(区别于并行)顺序扫描部分。
make_one_rel源代码:
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist) { //... /* * Compute size estimates and consider_parallel flags for each base rel, * then generate access paths. */ set_base_rel_sizes(root);//估算Relation的Size并且设置consider_parallel标记 set_base_rel_pathlists(root);//生成Relation的扫描(访问)路径 /* * Generate access paths for the entire join tree. * 通过动态规划或遗传算法生成连接路径 */ rel = make_rel_from_joinlist(root, joinlist); /* * The result should join all and only the query's base rels. */ Assert(bms_equal(rel->relids, root->all_baserels)); //返回最上层的RelOptInfo return rel; }
一、数据结构
RelOptInfo
typedef struct RelOptInfo { NodeTag type;//节点标识 RelOptKind reloptkind;//RelOpt类型 /* all relations included in this RelOptInfo */ Relids relids; /*Relids(rtindex)集合 set of base relids (rangetable indexes) */ /* size estimates generated by planner */ double rows; /*结果元组的估算数量 estimated number of result tuples */ /* per-relation planner control flags */ bool consider_startup; /*是否考虑启动成本?是,需要保留启动成本低的路径 keep cheap-startup-cost paths? */ bool consider_param_startup; /*是否考虑参数化?的路径 ditto, for parameterized paths? */ bool consider_parallel; /*是否考虑并行处理路径 consider parallel paths? */ /* default result targetlist for Paths scanning this relation */ struct PathTarget *reltarget; /*扫描该Relation时默认的结果 list of Vars/Exprs, cost, width */ /* materialization information */ List *pathlist; /*访问路径链表 Path structures */ List *ppilist; /*路径链表中使用参数化路径进行 ParamPathInfos used in pathlist */ List *partial_pathlist; /* partial Paths */ struct Path *cheapest_startup_path;//代价最低的启动路径 struct Path *cheapest_total_path;//代价最低的整体路径 struct Path *cheapest_unique_path;//代价最低的获取唯一值的路径 List *cheapest_parameterized_paths;//代价最低的参数化路径链表 /* parameterization information needed for both base rels and join rels */ /* (see also lateral_vars and lateral_referencers) */ Relids direct_lateral_relids; /*使用lateral语法,需依赖的Relids rels directly laterally referenced */ Relids lateral_relids; /* minimum parameterization of rel */ /* information about a base rel (not set for join rels!) */ //reloptkind=RELOPT_BASEREL时使用的数据结构 Index relid; /* Relation ID */ Oid reltablespace; /* 表空间 containing tablespace */ RTEKind rtekind; /* 基表?子查询?还是函数等等?RELATION, SUBQUERY, FUNCTION, etc */ AttrNumber min_attr; /* 最小的属性编号 smallest attrno of rel (often <0) */ AttrNumber max_attr; /* 最大的属性编号 largest attrno of rel */ Relids *attr_needed; /* 数组 array indexed [min_attr .. max_attr] */ int32 *attr_widths; /* 属性宽度 array indexed [min_attr .. max_attr] */ List *lateral_vars; /* 关系依赖的Vars/PHVs LATERAL Vars and PHVs referenced by rel */ Relids lateral_referencers; /*依赖该关系的Relids rels that reference me laterally */ List *indexlist; /* 该关系的IndexOptInfo链表 list of IndexOptInfo */ List *statlist; /* 统计信息链表 list of StatisticExtInfo */ BlockNumber pages; /* 块数 size estimates derived from pg_class */ double tuples; /* 元组数 */ double allvisfrac; /* ? */ PlannerInfo *subroot; /* 如为子查询,存储子查询的root if subquery */ List *subplan_params; /* 如为子查询,存储子查询的参数 if subquery */ int rel_parallel_workers; /* 并行执行,需要多少个workers? wanted number of parallel workers */ /* Information about foreign tables and foreign joins */ //FDW相关信息 Oid serverid; /* identifies server for the table or join */ Oid userid; /* identifies user to check access as */ bool useridiscurrent; /* join is only valid for current user */ /* use "struct FdwRoutine" to avoid including fdwapi.h here */ struct FdwRoutine *fdwroutine; void *fdw_private; /* cache space for remembering if we have proven this relation unique */ //已知的,可保证唯一元组返回的Relids链表 List *unique_for_rels; /* known unique for these other relid * set(s) */ List *non_unique_for_rels; /* 已知的,返回的数据不唯一的Relids链表 known not unique for these set(s) */ /* used by various scans and joins: */ List *baserestrictinfo; /* 如为基本关系,则存储约束条件 RestrictInfo structures (if base rel) */ QualCost baserestrictcost; /* 解析约束表达式的成本? cost of evaluating the above */ Index baserestrict_min_security; /* 最低安全等级 min security_level found in * baserestrictinfo */ List *joininfo; /* 连接语句的约束条件信息 RestrictInfo structures for join clauses * involving this rel */ bool has_eclass_joins; /* 是否存在等价类连接? True意味着joininfo并不完整,,T means joininfo is incomplete */ /* used by partitionwise joins: */ //是否尝试partitionwise连接,这是PG 11的一个新特性. bool consider_partitionwise_join; /* consider partitionwise * join paths? (if * partitioned rel) */ Relids top_parent_relids; /* Relids of topmost parents (if "other" * rel) */ /* used for partitioned relations */ //分区表使用 PartitionScheme part_scheme; /* 分区的schema Partitioning scheme. */ int nparts; /* 分区数 number of partitions */ struct PartitionBoundInfoData *boundinfo; /* 分区边界信息 Partition bounds */ List *partition_qual; /* 分区约束 partition constraint */ struct RelOptInfo **part_rels; /* 分区的RelOptInfo数组 Array of RelOptInfos of partitions, * stored in the same order of bounds */ List **partexprs; /* 非空分区键表达式 Non-nullable partition key expressions. */ List **nullable_partexprs; /* 可为空的分区键表达式 Nullable partition key expressions. */ List *partitioned_child_rels; /* RT Indexes链表 List of RT indexes. */ } RelOptInfo;
ParamPathInfo
/* * ParamPathInfo * * All parameterized paths for a given relation with given required outer rels * link to a single ParamPathInfo, which stores common information such as * the estimated rowcount for this parameterization. We do this partly to * avoid recalculations, but mostly to ensure that the estimated rowcount * is in fact the same for every such path. * * Note: ppi_clauses is only used in ParamPathInfos for base relation paths; * in join cases it's NIL because the set of relevant clauses varies depending * on how the join is formed. The relevant clauses will appear in each * parameterized join path's joinrestrictinfo list, instead. */ typedef struct ParamPathInfo { NodeTag type;//节点类型 Relids ppi_req_outer; /* 访问路径需要使用的Relids参数,rels supplying parameters used by path */ double ppi_rows; /* 估算的结果元组数,estimated number of result tuples */ List *ppi_clauses; /* 外部rels提供的可用连接条件链表,join clauses available from outer rels */ } ParamPathInfo;
Cost相关
注意:实际使用的参数值通过系统配置文件定义,而不是这里的常量定义!
/* * The cost estimate produced by cost_qual_eval() includes both a one-time * (startup) cost, and a per-tuple cost. */ typedef struct QualCost { Cost startup; /* 启动成本,one-time cost */ Cost per_tuple; /* 每个元组的成本,per-evaluation cost */ } QualCost; typedef double Cost; /* execution cost (in page-access units) */ /* defaults for costsize.c's Cost parameters */ /* NB: cost-estimation code should use the variables, not these constants! */ /* 注意:实际值通过系统配置文件定义,而不是这里的常量定义! */ /* If you change these, update backend/utils/misc/postgresql.sample.conf */ #define DEFAULT_SEQ_PAGE_COST 1.0 //顺序扫描page的成本 #define DEFAULT_RANDOM_PAGE_COST 4.0 //随机扫描page的成本 #define DEFAULT_CPU_TUPLE_COST 0.01 //处理一个元组的CPU成本 #define DEFAULT_CPU_INDEX_TUPLE_COST 0.005 //处理一个索引元组的CPU成本 #define DEFAULT_CPU_OPERATOR_COST 0.0025 //执行一次操作或函数的CPU成本 #define DEFAULT_PARALLEL_TUPLE_COST 0.1 //并行执行,从一个worker传输一个元组到另一个worker的成本 #define DEFAULT_PARALLEL_SETUP_COST 1000.0 //构建并行执行环境的成本 #define DEFAULT_EFFECTIVE_CACHE_SIZE 524288 /*先前已有介绍, measured in pages */ double seq_page_cost = DEFAULT_SEQ_PAGE_COST; double random_page_cost = DEFAULT_RANDOM_PAGE_COST; double cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST; double cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST; double cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST; double parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST; double parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST; int effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE; Cost disable_cost = 1.0e10;//1后面10个0,通过设置一个巨大的成本,让优化器自动放弃此路径 int max_parallel_workers_per_gather = 2;//每次gather使用的worker数
二、源码解读
set_base_rel_pathlists函数遍历RelOptInfo数组,为每一个Rel构造访问路径.
//-------------------------------------------------------- /* * set_base_rel_pathlists * Finds all paths available for scanning each base-relation entry. * Sequential scan and any available indices are considered. * Each useful path is attached to its relation's 'pathlist' field. * * 为每一个base rels找出所有可用的访问路径(包括顺序扫描和所有可用的索引) * 每一个可用的路径都会添加到pathlist链表中 * */ static void set_base_rel_pathlists(PlannerInfo *root) { Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++)//遍历RelOptInfo数组 { RelOptInfo *rel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (rel == NULL) continue; Assert(rel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (rel->reloptkind != RELOPT_BASEREL) continue; set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]); } } //-------------------------------------------------------- set_rel_pathlist /* * set_rel_pathlist * Build access paths for a base relation */ static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { if (IS_DUMMY_REL(rel)) { /* We already proved the relation empty, so nothing more to do */ } else if (rte->inh)//inherit { /* It's an "append relation", process accordingly */ set_append_rel_pathlist(root, rel, rti, rte); } else//常规 { switch (rel->rtekind) { case RTE_RELATION://数据表 if (rte->relkind == RELKIND_FOREIGN_TABLE)//FDW { /* Foreign table */ set_foreign_pathlist(root, rel, rte); } else if (rte->tablesample != NULL)//采样表 { /* Sampled relation */ set_tablesample_rel_pathlist(root, rel, rte); } else//常规数据表 { /* Plain relation */ set_plain_rel_pathlist(root, rel, rte); } break; case RTE_SUBQUERY://子查询 /* Subquery --- 已在set_rel_size处理,fully handled during set_rel_size */ /* 函数:set_subquery_pathlist */ break; case RTE_FUNCTION: /* RangeFunction */ set_function_pathlist(root, rel, rte); break; case RTE_TABLEFUNC: /* Table Function */ set_tablefunc_pathlist(root, rel, rte); break; case RTE_VALUES: /* Values list */ set_values_pathlist(root, rel, rte); break; case RTE_CTE: /* CTE reference --- fully handled during set_rel_size */ break; case RTE_NAMEDTUPLESTORE: /* tuplestore reference --- fully handled during set_rel_size */ break; default: elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind); break; } } /* * If this is a baserel, we should normally consider gathering any partial * paths we may have created for it. * * However, if this is an inheritance child, skip it. Otherwise, we could * end up with a very large number of gather nodes, each trying to grab * its own pool of workers. Instead, we'll consider gathering partial * paths for the parent appendrel. * * Also, if this is the topmost scan/join rel (that is, the only baserel), * we postpone this until the final scan/join targelist is available (see * grouping_planner). */ if (rel->reloptkind == RELOPT_BASEREL && bms_membership(root->all_baserels) != BMS_SINGLETON) generate_gather_paths(root, rel, false); /* * Allow a plugin to editorialize on the set of Paths for this base * relation. It could add new paths (such as CustomPaths) by calling * add_path(), or delete or modify paths added by the core code. */ if (set_rel_pathlist_hook)//钩子函数 (*set_rel_pathlist_hook) (root, rel, rti, rte); /* Now find the cheapest of the paths for this rel */ set_cheapest(rel);//找出代价最低的访问路径 #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif } //-------------------------------------------------------- set_plain_rel_pathlist /* * set_plain_rel_pathlist * Build access paths for a plain relation (no subquery, no inheritance) */ static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { Relids required_outer; /* * We don't support pushing join clauses into the quals of a seqscan, but * it could still have required parameterization due to LATERAL refs in * its tlist. */ required_outer = rel->lateral_relids;//需依赖的上层Relids /* 顺序扫描,Consider sequential scan */ add_path(rel, create_seqscan_path(root, rel, required_outer, 0)); /* 如合适,尝试并行顺序扫描,If appropriate, consider parallel sequential scan */ if (rel->consider_parallel && required_outer == NULL) create_plain_partial_paths(root, rel); /* 索引扫描,Consider index scans */ create_index_paths(root, rel); /* TID扫描,Consider TID scans */ create_tidscan_paths(root, rel); } //-------------------------------------------------------- create_seqscan_path /* * create_seqscan_path * Creates a path corresponding to a sequential scan, returning the * pathnode. */ Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers) { Path *pathnode = makeNode(Path);//顺序扫描路径 pathnode->pathtype = T_SeqScan;//顺序扫描 pathnode->parent = rel;//RelOptInfo pathnode->pathtarget = rel->reltarget;//投影列 pathnode->param_info = get_baserel_parampathinfo(root, rel, required_outer);//获取参数化路径信息ParamPathInfo pathnode->parallel_aware = parallel_workers > 0 ? true : false;//并行 pathnode->parallel_safe = rel->consider_parallel;// pathnode->parallel_workers = parallel_workers;//并行数 pathnode->pathkeys = NIL; /* 顺序扫描,不执行排序,seqscan has unordered result */ cost_seqscan(pathnode, root, rel, pathnode->param_info); return pathnode; } //-------------------------------------------- get_baserel_parampathinfo /* * get_baserel_parampathinfo * Get the ParamPathInfo for a parameterized path for a base relation, * constructing one if we don't have one already. * * 获取base rel的参数化路径,存储在结构体ParamPathInfo中.如果没有,那么构造一个. * * This centralizes estimating the rowcounts for parameterized paths. * We need to cache those to be sure we use the same rowcount for all paths * of the same parameterization for a given rel. This is also a convenient * place to determine which movable join clauses the parameterized path will * be responsible for evaluating. * * 统一/集中估计参数化路径的行数。通过缓存这些数据,对于相同的参数,可以快速给出相应的行数。 */ ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer) { ParamPathInfo *ppi;//ppi变量 Relids joinrelids;//参与连接的relids List *pclauses;//条件链表 double rows;//行数 ListCell *lc;//临时变量 /* Unparameterized paths have no ParamPathInfo */ if (bms_is_empty(required_outer)) return NULL; Assert(!bms_overlap(baserel->relids, required_outer)); /* If we already have a PPI for this parameterization, just return it */ if ((ppi = find_param_path_info(baserel, required_outer)))//已有缓存? return ppi;//直接返回 /* * Identify all joinclauses that are movable to this base rel given this * parameterization. * 在给定参数条件下,识别所有可移动到此基础关系的连接子句。 */ joinrelids = bms_union(baserel->relids, required_outer);//合并relids pclauses = NIL; foreach(lc, baserel->joininfo)//遍历连接条件 { RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);//连接条件 if (join_clause_is_movable_into(rinfo, baserel->relids, joinrelids)) pclauses = lappend(pclauses, rinfo);//如可以移动,添加到链表中 } /* * Add in joinclauses generated by EquivalenceClasses, too. (These * necessarily satisfy join_clause_is_movable_into.) * 通过等价类产生的连接条件一并合并到链表中 */ pclauses = list_concat(pclauses, generate_join_implied_equalities(root, joinrelids, required_outer, baserel)); /* Estimate the number of rows returned by the parameterized scan */ rows = get_parameterized_baserel_size(root, baserel, pclauses);//获取估算行数 /* And now we can build the ParamPathInfo */ ppi = makeNode(ParamPathInfo);//构造PPI返回节点 ppi->ppi_req_outer = required_outer; ppi->ppi_rows = rows; ppi->ppi_clauses = pclauses; baserel->ppilist = lappend(baserel->ppilist, ppi); return ppi; } //--------------------------------- get_parameterized_baserel_size /* * get_parameterized_baserel_size * Make a size estimate for a parameterized scan of a base relation. * 估算参数化扫描基础关系的大小 * * 'param_clauses' lists the additional join clauses to be used. * param_clauses是使用的连接条件链表 * * set_baserel_size_estimates must have been applied already. * 调用此函数前,要求已调用set_baserel_size_estimates函数 */ double get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel, List *param_clauses) { List *allclauses; double nrows; /* * Estimate the number of rows returned by the parameterized scan, knowing * that it will apply all the extra join clauses as well as the rel's own * restriction clauses. Note that we force the clauses to be treated as * non-join clauses during selectivity estimation. */ allclauses = list_concat(list_copy(param_clauses), rel->baserestrictinfo);//合并条件 nrows = rel->tuples * clauselist_selectivity(root, allclauses, rel->relid, /* do not use 0! */ JOIN_INNER, NULL);//获取行数 nrows = clamp_row_est(nrows); /* For safety, make sure result is not more than the base estimate */ if (nrows > rel->rows) nrows = rel->rows; return nrows;//返回 } //-------------------------------------------- cost_seqscan /* * cost_seqscan * Determines and returns the cost of scanning a relation sequentially. * 计算顺序扫描Rel的成本并返回 * * 'baserel' is the relation to be scanned * baserel:即将被扫描的Rel * * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL * param_info:ppi结构体 */ void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info) { Cost startup_cost = 0;//启动成本 Cost cpu_run_cost;//CPU成本 Cost disk_run_cost;//IO成本 double spc_seq_page_cost;// QualCost qpqual_cost;//表达式成本 Cost cpu_per_tuple;//每个元组的CPU成本 /* Should only be applied to base relations */ Assert(baserel->relid > 0); Assert(baserel->rtekind == RTE_RELATION); /* Mark the path with the correct row estimate */ if (param_info)//存在PPI path->rows = param_info->ppi_rows;//行数 else path->rows = baserel->rows;//直接取基础关系行数 if (!enable_seqscan) startup_cost += disable_cost;//不允许顺序扫描,disable_cost=1.0e10,即1后面10个0,这样的路径无需考虑 /* fetch estimated page cost for tablespace containing table */ get_tablespace_page_costs(baserel->reltablespace, NULL, &spc_seq_page_cost);//获取顺序访问表空间page的成本 /* * disk costs */ disk_run_cost = spc_seq_page_cost * baserel->pages;//IO成本 /* CPU costs */ get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);//CPU成本 startup_cost += qpqual_cost.startup;//启动成本 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;//处理每个元组的成本 cpu_run_cost = cpu_per_tuple * baserel->tuples;//CPU执行过程中的成本 /* tlist eval costs are paid per output row, not per tuple scanned */ startup_cost += path->pathtarget->cost.startup;//加上获取最终投影列的成本 cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;//加上获取最终投影列的成本 /* Adjust costing for parallelism, if used. */ if (path->parallel_workers > 0)//并行执行 { double parallel_divisor = get_parallel_divisor(path);//拆分多少份 /* The CPU cost is divided among all the workers. */ cpu_run_cost /= parallel_divisor;//每一份的成本 /* * It may be possible to amortize some of the I/O cost, but probably * not very much, because most operating systems already do aggressive * prefetching. For now, we assume that the disk run cost can't be * amortized at all. */ /* * In the case of a parallel plan, the row count needs to represent * the number of tuples processed per worker. */ path->rows = clamp_row_est(path->rows / parallel_divisor);//每一份的行数 } path->startup_cost = startup_cost;//赋值 path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;//总成本=启动 + 执行期的CPU和IO成本 } //-------------------------------- get_tablespace_page_costs /* * get_tablespace_page_costs * Return random and/or sequential page costs for a given tablespace. * 返回给定表空间的随机/顺序读取page的成本 * * This value is not locked by the transaction, so this value may * be changed while a SELECT that has used these values for planning * is still executing. */ void get_tablespace_page_costs(Oid spcid,//表空间Oid double *spc_random_page_cost, double *spc_seq_page_cost) { TableSpaceCacheEntry *spc = get_tablespace(spcid); Assert(spc != NULL); if (spc_random_page_cost)//随机读取 { if (!spc->opts || spc->opts->random_page_cost < 0) *spc_random_page_cost = random_page_cost; else *spc_random_page_cost = spc->opts->random_page_cost; } if (spc_seq_page_cost)//顺序读取 { if (!spc->opts || spc->opts->seq_page_cost < 0) *spc_seq_page_cost = seq_page_cost; else *spc_seq_page_cost = spc->opts->seq_page_cost; } } //-------------------------------- get_restriction_qual_cost /* * get_restriction_qual_cost * Compute evaluation costs of a baserel's restriction quals, plus any * movable join quals that have been pushed down to the scan. * Results are returned into *qpqual_cost. * 计算base rel限制条件的估算成本,包括被下推到限制条件的连接条件 * * This is a convenience subroutine that works for seqscans and other cases * where all the given quals will be evaluated the hard way. It's not useful * for cost_index(), for example, where the index machinery takes care of * some of the quals. We assume baserestrictcost was previously set by * set_baserel_size_estimates(). */ static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, QualCost *qpqual_cost) { if (param_info)//参数化信息 { /* Include costs of pushed-down clauses */ cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);//评估成本 qpqual_cost->startup += baserel->baserestrictcost.startup; qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple; } else *qpqual_cost = baserel->baserestrictcost;//没有参数化信息,直接返回 } //------------------- cost_qual_eval /* * cost_qual_eval * Estimate the CPU costs of evaluating a WHERE clause. * The input can be either an implicitly-ANDed list of boolean * expressions, or a list of RestrictInfo nodes. (The latter is * preferred since it allows caching of the results.) * The result includes both a one-time (startup) component, * and a per-evaluation component. */ void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root) { cost_qual_eval_context context; ListCell *l; context.root = root; context.total.startup = 0; context.total.per_tuple = 0; /* We don't charge any cost for the implicit ANDing at top level ... */ foreach(l, quals)//遍历链表 { Node *qual = (Node *) lfirst(l); cost_qual_eval_walker(qual, &context);//遍历表达式 } *cost = context.total;//返回总成本 } //------------ cost_qual_eval_walker static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context) { if (node == NULL) return false; /* * RestrictInfo nodes contain an eval_cost field reserved for this * routine's use, so that it's not necessary to evaluate the qual clause's * cost more than once. If the clause's cost hasn't been computed yet, * the field's startup value will contain -1. */ if (IsA(node, RestrictInfo))//约束条件 { RestrictInfo *rinfo = (RestrictInfo *) node; if (rinfo->eval_cost.startup < 0)//未计算成本,初始值为-1 { cost_qual_eval_context locContext; locContext.root = context->root; locContext.total.startup = 0; locContext.total.per_tuple = 0; /* * For an OR clause, recurse into the marked-up tree so that we * set the eval_cost for contained RestrictInfos too. */ if (rinfo->orclause) cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);//递归OR条件 else cost_qual_eval_walker((Node *) rinfo->clause, &locContext);//递归 /* * If the RestrictInfo is marked pseudoconstant, it will be tested * only once, so treat its cost as all startup cost. */ if (rinfo->pseudoconstant)//pseudoconstant标志为T { /* count one execution during startup */ locContext.total.startup += locContext.total.per_tuple; locContext.total.per_tuple = 0; } rinfo->eval_cost = locContext.total; } context->total.startup += rinfo->eval_cost.startup; context->total.per_tuple += rinfo->eval_cost.per_tuple; /* do NOT recurse into children */ return false; } /* * For each operator or function node in the given tree, we charge the * estimated execution cost given by pg_proc.procost (remember to multiply * this by cpu_operator_cost). * * Vars and Consts are charged zero, and so are boolean operators (AND, * OR, NOT). Simplistic, but a lot better than no model at all. * * Should we try to account for the possibility of short-circuit * evaluation of AND/OR? Probably *not*, because that would make the * results depend on the clause ordering, and we are not in any position * to expect that the current ordering of the clauses is the one that's * going to end up being used. The above per-RestrictInfo caching would * not mix well with trying to re-order clauses anyway. * * Another issue that is entirely ignored here is that if a set-returning * function is below top level in the tree, the functions/operators above * it will need to be evaluated multiple times. In practical use, such * cases arise so seldom as to not be worth the added complexity needed; * moreover, since our rowcount estimates for functions tend to be pretty * phony, the results would also be pretty phony. */ if (IsA(node, FuncExpr))//函数表达式 { context->total.per_tuple += get_func_cost(((FuncExpr *) node)->funcid) * cpu_operator_cost;//调用get_func_cost函数 } else if (IsA(node, OpExpr) || IsA(node, DistinctExpr) || IsA(node, NullIfExpr))//操作符/Distinct/NullIf判断,调用get_func_cost { /* rely on struct equivalence to treat these all alike */ set_opfuncid((OpExpr *) node); context->total.per_tuple += get_func_cost(((OpExpr *) node)->opfuncid) * cpu_operator_cost; } else if (IsA(node, ScalarArrayOpExpr))//数组 { /* * Estimate that the operator will be applied to about half of the * array elements before the answer is determined. */ ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node; Node *arraynode = (Node *) lsecond(saop->args); set_sa_opfuncid(saop); context->total.per_tuple += get_func_cost(saop->opfuncid) * cpu_operator_cost * estimate_array_length(arraynode) * 0.5; } else if (IsA(node, Aggref) || IsA(node, WindowFunc))//聚合函数或者窗口函数 { /* * Aggref and WindowFunc nodes are (and should be) treated like Vars, * ie, zero execution cost in the current model, because they behave * essentially like Vars at execution. We disregard the costs of * their input expressions for the same reason. The actual execution * costs of the aggregate/window functions and their arguments have to * be factored into plan-node-specific costing of the Agg or WindowAgg * plan node. */ return false; /* 0成本,不再递归到子节点中,don't recurse into children */ } else if (IsA(node, CoerceViaIO))//CoerceViaIO { CoerceViaIO *iocoerce = (CoerceViaIO *) node; Oid iofunc; Oid typioparam; bool typisvarlena; /* check the result type's input function */ getTypeInputInfo(iocoerce->resulttype, &iofunc, &typioparam); context->total.per_tuple += get_func_cost(iofunc) * cpu_operator_cost; /* check the input type's output function */ getTypeOutputInfo(exprType((Node *) iocoerce->arg), &iofunc, &typisvarlena); context->total.per_tuple += get_func_cost(iofunc) * cpu_operator_cost; } else if (IsA(node, ArrayCoerceExpr))//ArrayCoerceExpr { ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; QualCost perelemcost; cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr, context->root); context->total.startup += perelemcost.startup; if (perelemcost.per_tuple > 0) context->total.per_tuple += perelemcost.per_tuple * estimate_array_length((Node *) acoerce->arg); } else if (IsA(node, RowCompareExpr))//RowCompareExpr { /* Conservatively assume we will check all the columns */ RowCompareExpr *rcexpr = (RowCompareExpr *) node; ListCell *lc; foreach(lc, rcexpr->opnos) { Oid opid = lfirst_oid(lc); context->total.per_tuple += get_func_cost(get_opcode(opid)) * cpu_operator_cost; } } else if (IsA(node, MinMaxExpr) || IsA(node, SQLValueFunction) || IsA(node, XmlExpr) || IsA(node, CoerceToDomain) || IsA(node, NextValueExpr))//最小最大值/SQLValueFunction/XML表达式/CoerceToDomain/NextValueExpr { /* Treat all these as having cost 1 */ context->total.per_tuple += cpu_operator_cost; } else if (IsA(node, CurrentOfExpr))//CurrentOfExpr { /* Report high cost to prevent selection of anything but TID scan */ context->total.startup += disable_cost;//不考虑顺序扫描,使用TID扫描 } else if (IsA(node, SubLink)) { /* This routine should not be applied to un-planned expressions */ elog(ERROR, "cannot handle unplanned sub-select");//子链接,报错 } else if (IsA(node, SubPlan))//子计划 { /* * A subplan node in an expression typically indicates that the * subplan will be executed on each evaluation, so charge accordingly. * (Sub-selects that can be executed as InitPlans have already been * removed from the expression.) */ SubPlan *subplan = (SubPlan *) node; context->total.startup += subplan->startup_cost;//直接相加 context->total.per_tuple += subplan->per_call_cost; /* * We don't want to recurse into the testexpr, because it was already * counted in the SubPlan node's costs. So we're done. */ return false; } else if (IsA(node, AlternativeSubPlan))//AlternativeSubPlan { /* * Arbitrarily use the first alternative plan for costing. (We should * certainly only include one alternative, and we don't yet have * enough information to know which one the executor is most likely to * use.) */ AlternativeSubPlan *asplan = (AlternativeSubPlan *) node; return cost_qual_eval_walker((Node *) linitial(asplan->subplans), context); } else if (IsA(node, PlaceHolderVar))//PHV,成本为0 { /* * A PlaceHolderVar should be given cost zero when considering general * expression evaluation costs. The expense of doing the contained * expression is charged as part of the tlist eval costs of the scan * or join where the PHV is first computed (see set_rel_width and * add_placeholders_to_joinrel). If we charged it again here, we'd be * double-counting the cost for each level of plan that the PHV * bubbles up through. Hence, return without recursing into the * phexpr. */ return false; } /* recurse into children */ return expression_tree_walker(node, cost_qual_eval_walker, (void *) context);//递归到子节点中 } //------- get_func_cost /* * get_func_cost * Given procedure id, return the function's procost field. */ float4 get_func_cost(Oid funcid) { HeapTuple tp; float4 result; tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));//获取函数Oid if (!HeapTupleIsValid(tp)) elog(ERROR, "cache lookup failed for function %u", funcid); //查询数据字典:select proname,procost from pg_proc where procost > 1; result = ((Form_pg_proc) GETSTRUCT(tp))->procost;//直接获取函数的procost ReleaseSysCache(tp); return result; }
三、跟踪分析
启动gdb:
(gdb) b set_base_rel_pathlists Breakpoint 1 at 0x73bfb5: file allpaths.c, line 296. (gdb) c Continuing. Breakpoint 1, set_base_rel_pathlists (root=0x2fd9418) at allpaths.c:296 296 for (rti = 1; rti < root->simple_rel_array_size; rti++)
进入set_plain_rel_pathlist:
(gdb) 452 set_plain_rel_pathlist(root, rel, rte); (gdb) step set_plain_rel_pathlist (root=0x2fd9418, rel=0x2f98278, rte=0x2eaa5d8) at allpaths.c:704 704 required_outer = rel->lateral_relids;
进入create_seqscan_path:
(gdb) step create_seqscan_path (root=0x2fd9418, rel=0x2f98278, required_outer=0x0, parallel_workers=0) at pathnode.c:957 957 Path *pathnode = makeNode(Path); (gdb) 969 cost_seqscan(pathnode, root, rel, pathnode->param_info); (gdb) p *pathnode $2 = {type = T_Path, pathtype = T_SeqScan, parent = 0x2f98278, pathtarget = 0x2f98488, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 0, startup_cost = 0, total_cost = 0, pathkeys = 0x0}
进入cost_seqscan:
... (gdb) 230 path->rows = baserel->rows; #rows的获得上一节已作介绍 (gdb) p baserel->rows $4 = 10926 ... #表空间顺序扫描的成本 (gdb) p spc_seq_page_cost $5 = 1 #IO成本 (gdb) p disk_run_cost $6 = 726
进入get_restriction_qual_cost:
(gdb) step get_restriction_qual_cost (root=0x2fd9418, baserel=0x2f98278, param_info=0x0, qpqual_cost=0x7ffe12ca4620) at costsize.c:3999 3999 if (param_info) #没有参数化信息,直接使用baserel->baserestrictcost (gdb) n 4008 *qpqual_cost = baserel->baserestrictcost; (gdb) p baserel->baserestrictcost $7 = {startup = 0, per_tuple = 0.0050000000000000001}
回到cost_seqscan
(gdb) cost_seqscan (path=0x2f98990, root=0x2fd9418, baserel=0x2f98278, param_info=0x0) at costsize.c:248 248 startup_cost += qpqual_cost.startup; ...
执行cost_seqscan,最终的path:
(gdb) p *path $8 = {type = T_Path, pathtype = T_SeqScan, parent = 0x2f98278, pathtarget = 0x2f98488, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10926, startup_cost = 0, total_cost = 2226, pathkeys = 0x0} (gdb) p cpu_run_cost $9 = 1500 (gdb) p disk_run_cost $10 = 726
回到上层函数:
(gdb) n create_seqscan_path (root=0x2fd9418, rel=0x2f98278, required_outer=0x0, parallel_workers=0) at pathnode.c:971 971 return pathnode; (gdb) 972 } (gdb) set_plain_rel_pathlist (root=0x2fd9418, rel=0x2f98278, rte=0x2eaa5d8) at allpaths.c:710 710 if (rel->consider_parallel && required_outer == NULL)
继续执行构建索引扫描路径/TID扫描路径函数:
714 create_index_paths(root, rel); (gdb) 717 create_tidscan_paths(root, rel); (gdb) n 718 }
索引扫描路径的结果,rows = 10926, startup_cost = 324.40899999999999,total_cost = 1214.299
(gdb) p *rel->pathlist $14 = {type = T_List, length = 1, head = 0x2fe8d10, tail = 0x2fe8d10} (gdb) p *(Path *)rel->pathlist->head->data.ptr_value $15 = {type = T_BitmapHeapPath, pathtype = T_BitmapHeapScan, parent = 0x2f98278, pathtarget = 0x2f98488, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10926, startup_cost = 324.40899999999999, total_cost = 1214.299, pathkeys = 0x0}
结束调用
(gdb) set_base_rel_pathlists (root=0x2fd9418) at allpaths.c:296 296 for (rti = 1; rti < root->simple_rel_array_size; rti++) (gdb) 312 } (gdb) make_one_rel (root=0x2fd9418, joinlist=0x2f985d8) at allpaths.c:185 185 rel = make_rel_from_joinlist(root, joinlist); #DONE!
相应的SQL执行计划,cost=324.41..1214.30请参照索引扫描路径结果(这部分源码下一节分析):
testdb=# explain analyze verbose select t1.* from t_dwxx t1 where dwbh > '10000' and dwbh < '20000'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------- --- Bitmap Heap Scan on public.t_dwxx t1 (cost=324.41..1214.30 rows=10926 width=23) (actual time=3.196..4.959 rows=11111 loops= 1) Output: dwmc, dwbh, dwdz Recheck Cond: (((t1.dwbh)::text > '10000'::text) AND ((t1.dwbh)::text < '20000'::text)) Heap Blocks: exact=85 -> Bitmap Index Scan on t_dwxx_pkey (cost=0.00..321.68 rows=10926 width=0) (actual time=3.159..3.159 rows=11111 loops=1) Index Cond: (((t1.dwbh)::text > '10000'::text) AND ((t1.dwbh)::text < '20000'::text)) Planning Time: 0.315 ms Execution Time: 5.673 ms (8 rows)
感谢各位的阅读,以上就是“PostgreSQL的set_base_rel_pathlists函数及其子函数分析”的内容了,经过本文的学习后,相信大家对PostgreSQL的set_base_rel_pathlists函数及其子函数分析这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/205230.html