Problem
Write an efficient algorithm that searches for a value in an m x n matrix.
This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
Challenge
O(log(n) + log(m)) time
题解: 一次二分搜索 VS 两次二分搜索
- 一次二分搜索 – 由于矩阵按升序排列,因此可将二维矩阵转换为一维问题。对原始的二分搜索进行适当改变即可(求行和列)。时间复杂度为 O(log(mn))=O(log(m)+log(n))
- 两次二分搜索 – 先按行再按列进行搜索,即两次二分搜索。时间复杂度相同。
显然我们应该选择一次二分搜索,直接上 lower bound 二分模板。
Java:
public class Solution { /** * @param matrix, a list of lists of integers * @param target, an integer * @return a boolean, indicate whether matrix contains target */ public boolean searchMatrix(int[][] matrix, int target) { if (matrix == null || matrix.length == 0 || matrix[0] == null) { return false; } int ROW = matrix.length, COL = matrix[0].length; int lb = -1, ub = ROW * COL; while (lb + 1 < ub) { int mid = lb + (ub - lb) / 2; if (matrix[mid / COL][mid % COL] < target) { lb = mid; } else { if (matrix[mid / COL][mid % COL] == target) { return true; } ub = mid; } } return false; } }
源码分析
仍然可以使用经典的二分搜索模板(lower bound),注意下标的赋值即可。
- 首先对输入做异常处理,不仅要考虑到matrix为null,还要考虑到matrix[0]的长度也为0。
- 由于 lb 的变化处一定小于 target, 故在 else 中判断。
复杂度分析
二分搜索,O(logn).
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/20716.html