【多轮对话】任务型多轮对话数据集如何采集

研究任务型对话系统,首先得从数据集采集说起,学术界需要公开的数据集来证明模型的效果,工业界更需要以数据集为基础来构建更鲁棒的对话系统,那么业界成熟的对话系统数据集有哪些呢,对于多轮,如何更科学的采集数据减少错误呢,本文调研了一些近来一些方案供参考。

WoZ&MultiWOZ

A Network-based End-to-End Trainable Task-oriented Dialogue System提出了woz framework
Neural Belief Tracker: Data-Driven Dialogue State Tracking 在woz基础上添加了两个域,命名为woz2.0

WoZ是比较早期的对话数据集,也提出了一种对话数据集采集方法:既然要训练人机对话的模型,让机器像人一样自然的交流,那么我就用人来回复,自然就能够生产拟人的对话交互。这是出发点,采集过程中会告诉标注人员用户目标,然后标注人员开始与系统对话,这里的系统也是一个人,然后两个人对话生成多轮对话流。一句话就是human2human。主要也就是界面展示的开发,user和wizard都是由众包来填写,例如:

user

user: 给出实体(infrom, request),查看历史对话和任务描述,给出适当的回应句子。 如下图

在这里插入图片描述

wizard

在这里插入图片描述

网页给出一个表格,众包工作人员需要浏览对话历史记录。

  1. 通过在本回合解释用户输入填写表单(顶部绿色),并根据历史记录和数据库结果键入适当的响应( 底部绿色)。 提交表单时更新数据库搜索结果。 表单可以分为infrom slot和可request slot,包含state tracker所需的所有标签。
  2. 还需要输出回应

其优势在于:

每个人按轮次来标注,需要查看历史对话记录。使得数据的采集可以并行,减少标注者等待时间。

主要缺点

  • 可能不会涵盖所有的交互。(人主导)
  • 可能包含不适合用作培训数据的对话(例如,如果群众工作者使用过于简单化或过于复杂的语言)
  • 对话注释中可能有错误,需要开发人员过滤和清洗。

Self-play

刚刚也说到人人交互由人主导,对话交互覆盖、准确性等会有一些问题,那么有些文章就提出通过用户模拟器和系统交互生产对话outline,由模板转化为自然语言对话flow,然后通过众包来复述对话。部分方法还会采用bootstrapping方法,通过这部分生成的数据,再训练模拟器,生成更好的会话,再来总包复述。数据集包含:

M2M:

Building a conversational agent overnight with dialogue self-play, 代码
Dialogue Learning with Human Teaching and Feedback in End-to-End Trainable Task-Oriented Dialogue Systems

通过自动化任务无关的步骤以减少建立对话数据集所需的代价,主要包含以下模块

  1. 对话开发者提供任务Schema(intents&Slots)和API客户端,
  2. 自动机器人(User Bot&System bot)生成对话轮廓Outlines,(一个agenda based用户模拟器和一个基于有限状态机器的system agent)
  3. 众包重写成自然语言表达并验证slot span。
  4. 在数据集上用监督学习训练对话模型。
    M2M框架图

    生成大纲与段落的示例。

    在这里插入图片描述

    用户根据M2M生成的outline,来生成真正的对话数据集。

SGD

Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset

也是通过用户模拟和系统进行交互生成outline,通过模板生成简单会话,然后众包进行复述生成更像人的对话数据集,训练集包含16个域,而测试集包含18个域,这里测试集就要求模型具备跨域可迁移的能力。

对于数据集,其中的service、slots、intents除了名字、是否类别槽位,还有一段描述,其实是希望通过描述中更多的信息来获得其向量化表达,比如将描述用一个编码器进行embedding,提升其跨域能力。

例子如下:

在这里插入图片描述

Tree DST

Conversational Semantic Parsing for Dialog State Tracking

也是通过用户模拟和系统进行交互生成对话流,然后众包复述会话。区别在于将之前的dst通过句法解析的方式来建模。不过看最近貌似这种方式对于支持更多更复杂功能的语音助手流行,包括亚马逊的ASML,阿里的KAMR都有点将扁平的结构化表达转化为类树形的结构。

例子如图:

在这里插入图片描述

DSTC

https://zhuanlan.zhihu.com/p/200747822

来源:Amazon Mechanical Turk

dstc其实算是一个比较早的数据集,但是一直在更新,所以留到最后来讲,前期主要是通过human-machine的交互来收集对话数据集,来源是Amazon Mechanical Turk,不同点在于它还包含了automatic speech recognition (ASR)的候选集,更接近于真实情况,因为真实的语音助手就是要面对来自于asr的错误噪声等,需要在这种情况下尽量做出正确的用户反馈。数据集较多,特别是后面一次会有多个任务的数据集,也没有全了解。

Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset

中文

千言

2020 CCF BDCI 千言:多技能对话:收集了一系列公开的开放域对话数据,并对数据进行了统一的整理以及提供了统一的评测方式,期望从多个技能、多个领域的角度对模型效果进行综合评价

目前中文数据集看到还比较少,SMP也出过一些单轮对话数据集,总体上还是不如英文丰富。

原创文章,作者:306829225,如若转载,请注明出处:https://blog.ytso.com/212379.html

(0)
上一篇 2021年12月16日
下一篇 2021年12月16日

相关推荐

发表回复

登录后才能评论