如何进行Spark中Spark Streaming的分析

今天就跟大家聊聊有关如何进行Spark中Spark Streaming的分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

概览

Spark Streaming是Spark  API的一个可横向扩容,高吞吐量,容错的实时数据流处理引擎,Spark能够从Kafka、Flume、Kinesis或者TCP等等输入获取数据,然后能够使用复杂的计算表达式如map,reduce,join和window对数据进行计算。计算完后的数据能够被推送到文件系统,数据库,和实时的仪表盘。另外,你也可以使用Spark  ML和图计算处理实时数据流。

如何进行Spark中Spark Streaming的分析

Spark Streaming接受到了实时数据后,把它们分批进行切割,然后再交给Spark进行数据的批量处理。

如何进行Spark中Spark Streaming的分析

Spark  Streaming对离散化的数据流提供了高级别的抽象DStream,所有进入的数据流都会被处理为DStreams,在内部,DStream是一个顺序排列的RDD。

快速起步

第一个实例是如何从TCP输入中计算单词出现的次数

首先,我们创建一个JavaStreamingContext对象,它是所有Streaming函数的主入口,再创建一个带有2个线程的StreamingContext对象,每1秒进行一次批处理。

import org.apache.spark.*; import org.apache.spark.api.java.function.*; import org.apache.spark.streaming.*; import org.apache.spark.streaming.api.java.*; import scala.Tuple2;  SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));

创建一个侦听本地9999的TCP数据源

JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);

我们把接受到的数据按照空格进行切割

JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());

对单词进行统计

JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, 1)); JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((i1, i2) -> i1 + i2);  wordCounts.print();

把字符串拍扁->映射->进行去重统计,***调用print函数把数据打印到控制台中

jssc.start();              // Start the computation jssc.awaitTermination();   // Wait for the computation to terminate

最后,启动整个计算过程

为了完成这次实验,还需要使用nc作为Server进行配合

nc -lk 9999

Spark提供了示例,可以使用 ./bin/run-example streaming.JavaNetworkWordCount localhost  9999 来体验WordCount

看完上述内容,你们对如何进行Spark中Spark Streaming的分析有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

原创文章,作者:306829225,如若转载,请注明出处:https://blog.ytso.com/220431.html

(0)
上一篇 2022年1月2日
下一篇 2022年1月2日

相关推荐

发表回复

登录后才能评论