Spark Streaming+Spark SQL的数据倾斜示例分析

这篇文章将为大家详细讲解有关Spark Streaming+Spark SQL的数据倾斜示例分析,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

1.现象
Spark Streaming+Spark SQL的数据倾斜示例分析
三台机器都有产生executor,每台都会产生tasks,但是其中只有一台的task有input数据,其他机器的tasks都没有数据。

2.猜想
2.1是不是数据倾斜?

2.2是数据量过大,group by时,导致key分布不均?
比如key1 有98万,key2有2万,那么shuffle时,肯定数据倾斜。但是我刚开始数据量不是很大,所以pass  (就算数据量大,也很简单处理,一般处理时key加上随机前缀数)

2.3是不是数据量太少 不够分区的?
也怀疑过,不过还没去验证

2.4 flume流到kafka,是snappy压缩格式,而spark作为kafka的消费者,虽然能够自动识别压缩格式,但是这种snappy格式不支持切分
也怀疑过,不过还没去修改支持spilt的压缩格式,也还没去验证

2.5 spark streaming分区数目是有谁决定的?
使用direct这种模式是由kafka的分区数目决定
使用receiver这种模式由流的数目决定也就是由receiver数目决定。

3.修改分区数
[root@sht-sgmhadoopdn-02 kafka]#bin/kafka-topics.sh –alter  –zookeeper 172.16.101.58:2181,172.16.101.59:2181,172.16.101.60:2181/kafka –topic logtopic –partitions 3
[root@sht-sgmhadoopdn-02 kafka]# bin/kafka-topics.sh –describe –zookeeper 172.16.101.58:2181,172.16.101.59:2181,172.16.101.60:2181/kafka –topic logtopic
Topic:logtopic      PartitionCount:3        ReplicationFactor:3     Configs:
        Topic: test     Partition: 0    Leader: 3       Replicas: 3,1,2 Isr: 3,1,2
        Topic: test     Partition: 1    Leader: 1       Replicas: 1,2,3 Isr: 1,2,3
        Topic: test     Partition: 2    Leader: 2       Replicas: 2,3,1 Isr: 2,3,1
[root@sht-sgmhadoopdn-02 kafka]#

4.验证(每个executor都有input数据)
Spark Streaming+Spark SQL的数据倾斜示例分析

关于Spark Streaming+Spark SQL的数据倾斜示例分析就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/220478.html

(0)
上一篇 2022年1月2日
下一篇 2022年1月2日

相关推荐

发表回复

登录后才能评论