这篇文章主要介绍spark 3.0.1中AQE配置的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
AQE简介
从spark configuration,到在最早在spark 1.6版本就已经有了AQE;到了spark 2.x版本,intel大数据团队进行了相应的原型开发和实践;到了spark 3.0时代,Databricks和intel一起为社区贡献了新的AQE
spark 3.0.1中的AQE的配置
配置项 | 默认值 | 官方说明 | 分析 |
---|---|---|---|
spark.sql.adaptive.enabled | false | 是否开启自适应查询 | 此处设置为true开启 |
spark.sql.adaptive.coalescePartitions.enabled | true | 是否合并临近的shuffle分区(根据'spark.sql.adaptive.advisoryPartitionSizeInBytes'的阈值来合并) | 此处默认为true开启,分析见: 分析1 |
spark.sql.adaptive.coalescePartitions.initialPartitionNum | (none) | shuffle合并分区之前的初始分区数,默认为spark.sql.shuffle.partitions的值 | 分析见:分析2 |
spark.sql.adaptive.coalescePartitions.minPartitionNum | (none) | shuffle 分区合并后的最小分区数,默认为spark集群的默认并行度 | 分析见: 分析3 |
spark.sql.adaptive.advisoryPartitionSizeInBytes | 64MB | 建议的shuffle分区的大小,在合并分区和处理join数据倾斜的时候用到 | 分析见:分析3 |
spark.sql.adaptive.skewJoin.enabled | true | 是否开启join中数据倾斜的自适应处理 | |
spark.sql.adaptive.skewJoin.skewedPartitionFactor | 5 | 数据倾斜判断因子,必须同时满足skewedPartitionFactor和skewedPartitionThresholdInBytes | 分析见:分析4 |
spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes | 256MB | 数据倾斜判断阈值,必须同时满足skewedPartitionFactor和skewedPartitionThresholdInBytes | 分析见:分析4 |
spark.sql.adaptive.logLevel | debug | 配置自适应执行的计划改变日志 | 调整为info级别,便于观察自适应计划的改变 |
spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin | 0.2 | 转为broadcastJoin的非空分区比例阈值,>=该值,将不会转换为broadcastjoin | 分析见:分析5 |
分析1
在OptimizeSkewedJoin.scala中,我们看到ADVISORY_PARTITION_SIZE_IN_BYTES,也就是spark.sql.adaptive.advisoryPartitionSizeInBytes被引用的地方, (OptimizeSkewedJoin是物理计划中的规则)
/** * The goal of skew join optimization is to make the data distribution more even. The target size * to split skewed partitions is the average size of non-skewed partition, or the * advisory partition size if avg size is smaller than it. */ private def targetSize(sizes: Seq[Long], medianSize: Long): Long = { val advisorySize = conf.getConf(SQLConf.ADVISORY_PARTITION_SIZE_IN_BYTES) val nonSkewSizes = sizes.filterNot(isSkewed(_, medianSize)) // It's impossible that all the partitions are skewed, as we use median size to define skew. assert(nonSkewSizes.nonEmpty) math.max(advisorySize, nonSkewSizes.sum / nonSkewSizes.length) }
其中:
-
nonSkewSizes为task非倾斜的分区
-
targetSize返回的是max(非倾斜的分区的平均值,advisorySize),其中advisorySize为spark.sql.adaptive.advisoryPartitionSizeInBytes值,所以说 targetSize不一定是spark.sql.adaptive.advisoryPartitionSizeInBytes值
-
medianSize值为task的分区大小的中位值
分析2
在SQLConf.scala
def numShufflePartitions: Int = { if (adaptiveExecutionEnabled && coalesceShufflePartitionsEnabled) { getConf(COALESCE_PARTITIONS_INITIAL_PARTITION_NUM).getOrElse(defaultNumShufflePartitions) } else { defaultNumShufflePartitions } }
从spark 3.0.1开始如果开启了AQE和shuffle分区合并,则用的是spark.sql.adaptive.coalescePartitions.initialPartitionNum,这在如果有多个shuffle stage的情况下,增加分区数,可以有效的增强shuffle分区合并的效果
分析3
在CoalesceShufflePartitions.scala,CoalesceShufflePartitions是一个物理计划的规则,会执行如下操作
if (!shuffleStages.forall(_.shuffle.canChangeNumPartitions)) { plan } else { // `ShuffleQueryStageExec#mapStats` returns None when the input RDD has 0 partitions, // we should skip it when calculating the `partitionStartIndices`. val validMetrics = shuffleStages.flatMap(_.mapStats) // We may have different pre-shuffle partition numbers, don't reduce shuffle partition number // in that case. For example when we union fully aggregated data (data is arranged to a single // partition) and a result of a SortMergeJoin (multiple partitions). val distinctNumPreShufflePartitions = validMetrics.map(stats => stats.bytesByPartitionId.length).distinct if (validMetrics.nonEmpty && distinctNumPreShufflePartitions.length == 1) { // We fall back to Spark default parallelism if the minimum number of coalesced partitions // is not set, so to avoid perf regressions compared to no coalescing. val minPartitionNum = conf.getConf(SQLConf.COALESCE_PARTITIONS_MIN_PARTITION_NUM) .getOrElse(session.sparkContext.defaultParallelism) val partitionSpecs = ShufflePartitionsUtil.coalescePartitions( validMetrics.toArray, advisoryTargetSize = conf.getConf(SQLConf.ADVISORY_PARTITION_SIZE_IN_BYTES), minNumPartitions = minPartitionNum) // This transformation adds new nodes, so we must use `transformUp` here. val stageIds = shuffleStages.map(_.id).toSet plan.transformUp { // even for shuffle exchange whose input RDD has 0 partition, we should still update its // `partitionStartIndices`, so that all the leaf shuffles in a stage have the same // number of output partitions. case stage: ShuffleQueryStageExec if stageIds.contains(stage.id) => CustomShuffleReaderExec(stage, partitionSpecs, COALESCED_SHUFFLE_READER_DESCRIPTION) } } else { plan } } }
也就是说:
-
如果是用户自己指定的分区操作,如repartition操作,spark.sql.adaptive.coalescePartitions.minPartitionNum无效,且跳过分区合并优化
-
如果多个task进行shuffle,且task有不同的分区数的话,spark.sql.adaptive.coalescePartitions.minPartitionNum无效,且跳过分区合并优化
-
见ShufflePartitionsUtil.coalescePartition分析
分析4
在OptimizeSkewedJoin.scala中,我们看到
/** * A partition is considered as a skewed partition if its size is larger than the median * partition size * ADAPTIVE_EXECUTION_SKEWED_PARTITION_FACTOR and also larger than * ADVISORY_PARTITION_SIZE_IN_BYTES. */ private def isSkewed(size: Long, medianSize: Long): Boolean = { size > medianSize * conf.getConf(SQLConf.SKEW_JOIN_SKEWED_PARTITION_FACTOR) && size > conf.getConf(SQLConf.SKEW_JOIN_SKEWED_PARTITION_THRESHOLD) }
-
OptimizeSkewedJoin是个物理计划的规则,会根据isSkewed来判断是否数据数据有倾斜,而且必须是满足SKEW_JOIN_SKEWED_PARTITION_FACTOR和SKEW_JOIN_SKEWED_PARTITION_THRESHOLD才会判断为数据倾斜了
-
medianSize为task的分区大小的中位值
分析5
在AdaptiveSparkPlanExec方法getFinalPhysicalPlan中调用了reOptimize方法,而reOptimize方法则会执行逻辑计划的优化操作:
private def reOptimize(logicalPlan: LogicalPlan): (SparkPlan, LogicalPlan) = { logicalPlan.invalidateStatsCache() val optimized = optimizer.execute(logicalPlan) val sparkPlan = context.session.sessionState.planner.plan(ReturnAnswer(optimized)).next() val newPlan = applyPhysicalRules(sparkPlan, preprocessingRules ++ queryStagePreparationRules) (newPlan, optimized) }
而optimizer 中有个DemoteBroadcastHashJoin规则:
@transient private val optimizer = new RuleExecutor[LogicalPlan] { // TODO add more optimization rules override protected def batches: Seq[Batch] = Seq( Batch("Demote BroadcastHashJoin", Once, DemoteBroadcastHashJoin(conf)) ) }
而对于DemoteBroadcastHashJoin则有对是否broadcastjoin的判断:
case class DemoteBroadcastHashJoin(conf: SQLConf) extends Rule[LogicalPlan] { private def shouldDemote(plan: LogicalPlan): Boolean = plan match { case LogicalQueryStage(_, stage: ShuffleQueryStageExec) if stage.resultOption.isDefined && stage.mapStats.isDefined => val mapStats = stage.mapStats.get val partitionCnt = mapStats.bytesByPartitionId.length val nonZeroCnt = mapStats.bytesByPartitionId.count(_ > 0) partitionCnt > 0 && nonZeroCnt > 0 && (nonZeroCnt * 1.0 / partitionCnt) < conf.nonEmptyPartitionRatioForBroadcastJoin case _ => false } def apply(plan: LogicalPlan): LogicalPlan = plan.transformDown { case j @ Join(left, right, _, _, hint) => var newHint = hint if (!hint.leftHint.exists(_.strategy.isDefined) && shouldDemote(left)) { newHint = newHint.copy(leftHint = Some(hint.leftHint.getOrElse(HintInfo()).copy(strategy = Some(NO_BROADCAST_HASH)))) } if (!hint.rightHint.exists(_.strategy.isDefined) && shouldDemote(right)) { newHint = newHint.copy(rightHint = Some(hint.rightHint.getOrElse(HintInfo()).copy(strategy = Some(NO_BROADCAST_HASH)))) } if (newHint.ne(hint)) { j.copy(hint = newHint) } else { j } } }
shouldDemote就是对是否进行broadcastjoin的判断:
-
首先得是ShuffleQueryStageExec操作
-
如果非空分区比列大于nonEmptyPartitionRatioForBroadcastJoin,也就是spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin,则不会把mergehashjoin转换为broadcastJoin
-
这在sql中先join在groupby的场景中比较容易出现
ShufflePartitionsUtil.coalescePartition分析(合并分区的核心代码)
见coalescePartition如示:
def coalescePartitions( mapOutputStatistics: Array[MapOutputStatistics], advisoryTargetSize: Long, minNumPartitions: Int): Seq[ShufflePartitionSpec] = { // If `minNumPartitions` is very large, it is possible that we need to use a value less than // `advisoryTargetSize` as the target size of a coalesced task. val totalPostShuffleInputSize = mapOutputStatistics.map(_.bytesByPartitionId.sum).sum // The max at here is to make sure that when we have an empty table, we only have a single // coalesced partition. // There is no particular reason that we pick 16. We just need a number to prevent // `maxTargetSize` from being set to 0. val maxTargetSize = math.max( math.ceil(totalPostShuffleInputSize / minNumPartitions.toDouble).toLong, 16) val targetSize = math.min(maxTargetSize, advisoryTargetSize) val shuffleIds = mapOutputStatistics.map(_.shuffleId).mkString(", ") logInfo(s"For shuffle($shuffleIds), advisory target size: $advisoryTargetSize, " + s"actual target size $targetSize.") // Make sure these shuffles have the same number of partitions. val distinctNumShufflePartitions = mapOutputStatistics.map(stats => stats.bytesByPartitionId.length).distinct // The reason that we are expecting a single value of the number of shuffle partitions // is that when we add Exchanges, we set the number of shuffle partitions // (i.e. map output partitions) using a static setting, which is the value of // `spark.sql.shuffle.partitions`. Even if two input RDDs are having different // number of partitions, they will have the same number of shuffle partitions // (i.e. map output partitions). assert( distinctNumShufflePartitions.length == 1, "There should be only one distinct value of the number of shuffle partitions " + "among registered Exchange operators.") val numPartitions = distinctNumShufflePartitions.head val partitionSpecs = ArrayBuffer[CoalescedPartitionSpec]() var latestSplitPoint = 0 var coalescedSize = 0L var i = 0 while (i < numPartitions) { // We calculate the total size of i-th shuffle partitions from all shuffles. var totalSizeOfCurrentPartition = 0L var j = 0 while (j < mapOutputStatistics.length) { totalSizeOfCurrentPartition += mapOutputStatistics(j).bytesByPartitionId(i) j += 1 } // If including the `totalSizeOfCurrentPartition` would exceed the target size, then start a // new coalesced partition. if (i > latestSplitPoint && coalescedSize + totalSizeOfCurrentPartition > targetSize) { partitionSpecs += CoalescedPartitionSpec(latestSplitPoint, i) latestSplitPoint = i // reset postShuffleInputSize. coalescedSize = totalSizeOfCurrentPartition } else { coalescedSize += totalSizeOfCurrentPartition } i += 1 } partitionSpecs += CoalescedPartitionSpec(latestSplitPoint, numPartitions) partitionSpecs }
-
totalPostShuffleInputSize 先计算出总的shuffle的数据大小
-
maxTargetSize取max(totalPostShuffleInputSize/minNumPartitions,16)的最大值,minNumPartitions也就是spark.sql.adaptive.coalescePartitions.minPartitionNum的值
-
targetSize取min(maxTargetSize,advisoryTargetSize),advisoryTargetSize也就是spark.sql.adaptive.advisoryPartitionSizeInBytes的值,所以说该值只是建议值,不一定是targetSize
-
while循环就是取相邻的分区合并,对于每个task中的每个相邻分区合并,直到不大于targetSize
OptimizeSkewedJoin.optimizeSkewJoin分析(数据倾斜优化的核心代码)
见optimizeSkewJoin如示:
def optimizeSkewJoin(plan: SparkPlan): SparkPlan = plan.transformUp { case smj @ SortMergeJoinExec(_, _, joinType, _, s1 @ SortExec(_, _, ShuffleStage(left: ShuffleStageInfo), _), s2 @ SortExec(_, _, ShuffleStage(right: ShuffleStageInfo), _), _) if supportedJoinTypes.contains(joinType) => assert(left.partitionsWithSizes.length == right.partitionsWithSizes.length) val numPartitions = left.partitionsWithSizes.length // Use the median size of the actual (coalesced) partition sizes to detect skewed partitions. val leftMedSize = medianSize(left.partitionsWithSizes.map(_._2)) val rightMedSize = medianSize(right.partitionsWithSizes.map(_._2)) logDebug( s""" |Optimizing skewed join. |Left side partitions size info: |${getSizeInfo(leftMedSize, left.partitionsWithSizes.map(_._2))} |Right side partitions size info: |${getSizeInfo(rightMedSize, right.partitionsWithSizes.map(_._2))} """.stripMargin) val canSplitLeft = canSplitLeftSide(joinType) val canSplitRight = canSplitRightSide(joinType) // We use the actual partition sizes (may be coalesced) to calculate target size, so that // the final data distribution is even (coalesced partitions + split partitions). val leftActualSizes = left.partitionsWithSizes.map(_._2) val rightActualSizes = right.partitionsWithSizes.map(_._2) val leftTargetSize = targetSize(leftActualSizes, leftMedSize) val rightTargetSize = targetSize(rightActualSizes, rightMedSize) val leftSidePartitions = mutable.ArrayBuffer.empty[ShufflePartitionSpec] val rightSidePartitions = mutable.ArrayBuffer.empty[ShufflePartitionSpec] val leftSkewDesc = new SkewDesc val rightSkewDesc = new SkewDesc for (partitionIndex <- 0 until numPartitions) { val isLeftSkew = isSkewed(leftActualSizes(partitionIndex), leftMedSize) && canSplitLeft val leftPartSpec = left.partitionsWithSizes(partitionIndex)._1 val isLeftCoalesced = leftPartSpec.startReducerIndex + 1 < leftPartSpec.endReducerIndex val isRightSkew = isSkewed(rightActualSizes(partitionIndex), rightMedSize) && canSplitRight val rightPartSpec = right.partitionsWithSizes(partitionIndex)._1 val isRightCoalesced = rightPartSpec.startReducerIndex + 1 < rightPartSpec.endReducerIndex // A skewed partition should never be coalesced, but skip it here just to be safe. val leftParts = if (isLeftSkew && !isLeftCoalesced) { val reducerId = leftPartSpec.startReducerIndex val skewSpecs = createSkewPartitionSpecs( left.mapStats.shuffleId, reducerId, leftTargetSize) if (skewSpecs.isDefined) { logDebug(s"Left side partition $partitionIndex is skewed, split it into " + s"${skewSpecs.get.length} parts.") leftSkewDesc.addPartitionSize(leftActualSizes(partitionIndex)) } skewSpecs.getOrElse(Seq(leftPartSpec)) } else { Seq(leftPartSpec) } // A skewed partition should never be coalesced, but skip it here just to be safe. val rightParts = if (isRightSkew && !isRightCoalesced) { val reducerId = rightPartSpec.startReducerIndex val skewSpecs = createSkewPartitionSpecs( right.mapStats.shuffleId, reducerId, rightTargetSize) if (skewSpecs.isDefined) { logDebug(s"Right side partition $partitionIndex is skewed, split it into " + s"${skewSpecs.get.length} parts.") rightSkewDesc.addPartitionSize(rightActualSizes(partitionIndex)) } skewSpecs.getOrElse(Seq(rightPartSpec)) } else { Seq(rightPartSpec) } for { leftSidePartition <- leftParts rightSidePartition <- rightParts } { leftSidePartitions += leftSidePartition rightSidePartitions += rightSidePartition } } logDebug("number of skewed partitions: " + s"left ${leftSkewDesc.numPartitions}, right ${rightSkewDesc.numPartitions}") if (leftSkewDesc.numPartitions > 0 || rightSkewDesc.numPartitions > 0) { val newLeft = CustomShuffleReaderExec( left.shuffleStage, leftSidePartitions, leftSkewDesc.toString) val newRight = CustomShuffleReaderExec( right.shuffleStage, rightSidePartitions, rightSkewDesc.toString) smj.copy( left = s1.copy(child = newLeft), right = s2.copy(child = newRight), isSkewJoin = true) } else { smj } }
-
SortMergeJoinExec说明适用于sort merge join
-
assert(left.partitionsWithSizes.length == right.partitionsWithSizes.length)保证进行join的两个task的分区数相等
-
分别计算进行join的task的分区中位数的大小leftMedSize和rightMedSize
-
分别计算进行join的task的分区的targetzise大小leftTargetSize和rightTargetSize
-
循环判断两个task的每个分区的是否存在倾斜,如果倾斜且满足没有进行过shuffle分区合并,则进行倾斜分区处理,否则不处理
-
createSkewPartitionSpecs方法为: 1.获取每个join的task的对应分区的数据大小 2.根据targetSize分成多个slice
-
如果存在数据倾斜,则构造包装成CustomShuffleReaderExec,进行后续任务的运行,最最终调用ShuffledRowRDD的compute方法 匹配case PartialMapperPartitionSpec进行数据的读取,其中还会自动开启“spark.sql.adaptive.fetchShuffleBlocksInBatch”批量fetch减少io
OptimizeSkewedJoin/CoalesceShufflePartitions 在哪里被调用
如:AdaptiveSparkPlanExec
@transient private val queryStageOptimizerRules: Seq[Rule[SparkPlan]] = Seq( ReuseAdaptiveSubquery(conf, context.subqueryCache), CoalesceShufflePartitions(context.session), // The following two rules need to make use of 'CustomShuffleReaderExec.partitionSpecs' // added by `CoalesceShufflePartitions`. So they must be executed after it. OptimizeSkewedJoin(conf), OptimizeLocalShuffleReader(conf) )
可见在AdaptiveSparkPlanExec中被调用 ,且CoalesceShufflePartitions先于OptimizeSkewedJoin, 而AdaptiveSparkPlanExec在InsertAdaptiveSparkPlan中被调用 ,而InsertAdaptiveSparkPlan在QueryExecution中被调用
而在InsertAdaptiveSparkPlan.shouldApplyAQE方法和supportAdaptive中我们看到
private def shouldApplyAQE(plan: SparkPlan, isSubquery: Boolean): Boolean = { conf.getConf(SQLConf.ADAPTIVE_EXECUTION_FORCE_APPLY) || isSubquery || { plan.find { case _: Exchange => true case p if !p.requiredChildDistribution.forall(_ == UnspecifiedDistribution) => true case p => p.expressions.exists(_.find { case _: SubqueryExpression => true case _ => false }.isDefined) }.isDefined } } private def supportAdaptive(plan: SparkPlan): Boolean = { // TODO migrate dynamic-partition-pruning onto adaptive execution. sanityCheck(plan) && !plan.logicalLink.exists(_.isStreaming) && !plan.expressions.exists(_.find(_.isInstanceOf[DynamicPruningSubquery]).isDefined) && plan.children.forall(supportAdaptive) }
如果不满足以上条件也是不会开启AQE的,如果要强制开启,也可以配置spark.sql.adaptive.forceApply 为true(文档中提示是内部配置)
注意:
在spark 3.0.1中已经废弃了如下的配置:
spark.sql.adaptive.skewedPartitionMaxSplits spark.sql.adaptive.skewedPartitionRowCountThreshold spark.sql.adaptive.skewedPartitionSizeThreshold
以上是“spark 3.0.1中AQE配置的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
原创文章,作者:506227337,如若转载,请注明出处:https://blog.ytso.com/223000.html