Spark2.2.0中RDD转DataFrame的方式是什么

今天就跟大家聊聊有关Spark2.2.0中RDD转DataFrame的方式是什么,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

Spark SQL如何将现有的RDDs转换为数据集。

方法:通过编程接口,该接口允许您构造一个模式,然后将其应用于现有的RDD。虽然此方法更详细,但它允许您在列及其类型直到运行时才知道时构造数据集。

数据准备studentData.txt

1001,20,zhangsan1002,17,lisi1003,24,wangwu1004,16,zhaogang

代码实例:

package com.unicom.ljs.spark220.study;
import org.apache.spark.SparkConf;import org.apache.spark.SparkContext;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.rdd.RDD;import org.apache.spark.sql.*;import org.apache.spark.sql.types.*;
import java.util.ArrayList;import java.util.List;
/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-01-21 13:42 * @version: v1.0 * @description: com.unicom.ljs.spark220.study */public class RDD2DataFrameProgramatically {    public static void main(String[] args) {        SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD2DataFrameProgramatically");        JavaSparkContext sc = new JavaSparkContext(sparkConf);        SQLContext sqlContext = new SQLContext(sc);
       JavaRDD<String> lineRDD =sc.textFile("C://Users//Administrator//Desktop//studentData.txt");        JavaRDD<Row> rowJavaRDD = lineRDD.map(new Function<String, Row>() {            @Override            public Row call(String line) throws Exception {                String[] splitLine = line.split(",");                return RowFactory.create(Integer.valueOf(splitLine[0])                        ,Integer.valueOf(splitLine[1])                        ,splitLine[2]);            }        });        List<StructField> structFields=new ArrayList<StructField>();        /*StructField structField1=new StructField("id", DataTypes.IntegerType,true);*/        structFields.add(DataTypes.createStructField("id",DataTypes.IntegerType,true));        structFields.add(DataTypes.createStructField("age",DataTypes.IntegerType,true));        structFields.add(DataTypes.createStructField("name",DataTypes.StringType,true));
       StructType structType=DataTypes.createStructType(structFields);

       Dataset<Row> dataFrame = sqlContext.createDataFrame(rowJavaRDD, structType);
        dataFrame.registerTempTable("studentInfo");
        Dataset<Row> resultDataSet = sqlContext.sql("select  * from studentInfo where age > 17");
       List<Row> collect = resultDataSet.javaRDD().collect();        for(Row row: collect){            System.out.println(row);        }        sc.close();    }}

pom.xml关键依赖:

<spark.version>2.2.0</spark.version>
<scala.version>2.11.8</scala.version>
<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-sql_2.11</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-core_2.11</artifactId>    <version>${spark.version}</version></dependency>

看完上述内容,你们对Spark2.2.0中RDD转DataFrame的方式是什么有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

原创文章,作者:506227337,如若转载,请注明出处:https://blog.ytso.com/223206.html

(0)
上一篇 2022年1月6日
下一篇 2022年1月6日

相关推荐

发表回复

登录后才能评论