这篇文章给大家分享的是有关LeetCode如何找出滑动窗口的最大值的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
题目描述
给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。
-
你可以假设 k 总是有效的,在输入数组不为空的情况下,1 ≤ k ≤ 输入数组的大小。
题目样例
示例
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
题目思考
-
如果要求时间复杂度为 O(N), 该如何做?
解决方案
思路
-
一个比较容易想到的思路是暴力法, 即固定每个起点, 然后求它之后 k 个元素的最大值并依次加入结果中, 这样时间复杂度为 O(Nk), 当 k 很大的时候效率非常低, 该如何提高效率呢? -
重新观察题目示例, 如果我们能够动态维护当前窗口的最大值, 那么在窗口移动的时候只需要用 O(1)时间返回这个值即可 -
窗口右移的时候, 如果新加入的值比原来的最大值还要大的话就好办, 直接更新最大值即可 -
但问题来了, 窗口右移意味着左边界也要向右移动, 如果正好之前的左边界是最大值该如何处理呢? 显然只保存最大值一个变量是不够的, 我们也需要保存第二大值, 第三大值… -
根据上面的分析, 我们需要把这些值保存在一个单调的数据结构中, 一边是窗口里的最大值, 另一边则是最小值 -
窗口右移的时候, 按照顺序分为三部分操作: -
(当加入当前值后窗口长度会超过 k 时, 即
right>=k
) 移除老的左边界值:
如果它恰好是最大值, 也移除单调数据结构中对应的值 -
加入新的右边界值: 此时需要先不断移除最小值, 直到当前新值成为新的最小值再插入, 因为更小的值绝不可能成为最大值的候选项(
又旧, 值又小) -
(当加入当前值后窗口长度达到 k 时, 即
right>=k-1
) 将单调数据结构中保存的最大值加入最终结果中 -
注意上述三个步骤中 3 必须是最后一步, 因为要先调整完当前窗口的最大最小值才行, 而 1 和 2 可以互换位置, 因为可以先处理左边界, 也可以先处理右边界 -
根据上述过程, 我们只需要处理头和尾的插入删除操作, 很显然
双端队列就是最合适的数据结构, 两种操作都只需要 O(1)时间 -
下面代码对必要的步骤有详细的解释, 特别是对步骤 1 和 2 的一些关键点的解释, 方便大家理解
复杂度
-
时间复杂度 O(N): 每个值最多加入和移出双端队列各一次, 总共 2N 次操作, 所以时间复杂度是 O(N) -
空间复杂度 O(k): 双端队列最多存 k 个值
代码
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
# 单调双端队列, 左边存窗口最小值, 右边存窗口最大值
q = collections.deque()
res = []
left = 0
for right in range(len(nums)):
# 步骤1 (当加入当前值后窗口长度会超过 k 时, 即right>=k) - 移除老的左边界值: 如果它恰好是最大值, 也移除队列尾
# 注意左边界如果不是最大值的话, 不会存在于队列中, 因为它后面总有更大的值将左边界从队列中淘汰出去 (步骤2的操作)
if right >= k:
if nums[left] == q[-1]:
q.pop()
left += 1
# 步骤2 (可以和步骤1互换位置) - 加入新的右边界值: 此时需要先不断移除队列左侧最小值, 直到当前新值成为新的最小值再插入左侧, 因为更小的值绝不可能成为最大值的候选项(又旧, 值又小)
# 注意这里需要是小于而不能是小于等于, 因为如果当最小值等于当前值且都被移除的话, 如果它恰好也是最大值, 那么下次移除左边界的时候就会错误地将当前的值给移除, 而不是移除左边界对应的那个值, 这样会导致后面的最大值计算出现错误
while q and q[0] < nums[right]:
q.popleft()
q.appendleft(nums[right])
# 步骤3 (当加入当前值后窗口长度达到 k 时, 即right>=k-1) - 将队列右侧最大值加入最终结果中
if right >= k - 1:
res.append(q[-1])
return res
感谢各位的阅读!关于“LeetCode如何找出滑动窗口的最大值”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
原创文章,作者:1402239773,如若转载,请注明出处:https://blog.ytso.com/223486.html