1.概述
最近有同学在学习Kafka的网络通信这块内容时遇到一些疑问,关于网络模型和通信流程的相关内容,这里笔者将通过这篇博客为大家来剖析一下这部分内容。
2.内容
Kafka系统作为一个Message Queue,涉及到的网络通信主要包含以下两个方面:
- Pull:Consumer从消息队列中拉取消息数据;
- Push:Producer往消息队列中推送消息数据。
要实现高性能的网络通信,可以使用更加底层的TCP协议或者UDP协议来实现。Kafka在Producer、Broker、Consumer之间设计了一套基于TCP层的通信协议,这套协议完全是为了Kafka系统自身需求而定制实现的。
提示:
这里需要注意的是,由于UDP协议是一种不可靠的传输协议,所以Kafka系统采用TCP协议作为服务间的通信协议。
2.1 基本数据类型
通信协议中的基本数据类型分为以下几种:
- 定长数据类型:例如,int8、int16、int32和、int64,对应到Java语言中,分别是byte、short、int和long
- 可变数据类型:例如,Java语言中Map、List等
- 数组:例如,Java语言中的int[]、String[]等
2.2 通信模型
Kafka系统采用的是Reactor多线程模型,即通过一个Acceptor线程处理所有的新连接,通过多个Processor线程对请求进行处理(比如解析协议、封装请求、、转发等)。
提示:
Reactor是一种事件模型,可以将请求提交到一个或者多个服务程序中进行处理。
当收到Client的请求后,Server处理程序使用多路分发策略,由一个非阻塞的线程来接收所有的请求,然后将这些请求转发到对应的工作线程中进行处理。
之后,在Kafka的版本迭代中,新增了一个Handler模块,它通过指定的线程数对请求进行处理。Handler和Processor之间通过一个Block Queue进行连接。如下图所示:
这里 Acceptor是一个继承于AbstractServerThread的线程类,Acceptor的主要目的是监听并且接收Client的请求,同时,建立数据传输通道(SocketChannel),然后通过轮询的方式交给一个Processor处理。其核心代码在Acceptor的run方法中,代码如下:
def run() { serverChannel.register(nioSelector, SelectionKey.OP_ACCEPT) startupComplete() try { var currentProcessor = 0 while (isRunning) { try { val ready = nioSelector.select(500) if (ready > 0) { val keys = nioSelector.selectedKeys() val iter = keys.iterator() while (iter.hasNext && isRunning) { try { val key = iter.next iter.remove() if (key.isAcceptable) accept(key, processors(currentProcessor)) else throw new IllegalStateException("Unrecognized key state for acceptor thread.") // round robin to the next processor thread currentProcessor = (currentProcessor + 1) % processors.length } catch { case e: Throwable => error("Error while accepting connection", e) } } } } catch { // We catch all the throwables to prevent the acceptor thread from exiting on exceptions due // to a select operation on a specific channel or a bad request. We don't want // the broker to stop responding to requests from other clients in these scenarios. case e: ControlThrowable => throw e case e: Throwable => error("Error occurred", e) } } } finally { debug("Closing server socket and selector.") swallowError(serverChannel.close()) swallowError(nioSelector.close()) shutdownComplete() } }
这里还有一个块通道(BlockingChannel),用于连接Processor和Handler,其代码如下所示:
class BlockingChannel( val host: String, val port: Int, val readBufferSize: Int, val writeBufferSize: Int, val readTimeoutMs: Int ) extends Logging { private var connected = false private var channel: SocketChannel = null private var readChannel: ReadableByteChannel = null private var writeChannel: GatheringByteChannel = null private val lock = new Object() private val connectTimeoutMs = readTimeoutMs private var connectionId: String = "" def connect() = lock synchronized { if(!connected) { try { channel = SocketChannel.open() if(readBufferSize > 0) channel.socket.setReceiveBufferSize(readBufferSize) if(writeBufferSize > 0) channel.socket.setSendBufferSize(writeBufferSize) channel.configureBlocking(true) channel.socket.setSoTimeout(readTimeoutMs) channel.socket.setKeepAlive(true) channel.socket.setTcpNoDelay(true) channel.socket.connect(new InetSocketAddress(host, port), connectTimeoutMs) writeChannel = channel // Need to create a new ReadableByteChannel from input stream because SocketChannel doesn't implement read with timeout // See: http://stackoverflow.com/questions/2866557/timeout-for-socketchannel-doesnt-work readChannel = Channels.newChannel(channel.socket().getInputStream) connected = true val localHost = channel.socket.getLocalAddress.getHostAddress val localPort = channel.socket.getLocalPort val remoteHost = channel.socket.getInetAddress.getHostAddress val remotePort = channel.socket.getPort connectionId = localHost + ":" + localPort + "-" + remoteHost + ":" + remotePort // settings may not match what we requested above val msg = "Created socket with SO_TIMEOUT = %d (requested %d), SO_RCVBUF = %d (requested %d), SO_SNDBUF = %d (requested %d), connectTimeoutMs = %d." debug(msg.format(channel.socket.getSoTimeout, readTimeoutMs, channel.socket.getReceiveBufferSize, readBufferSize, channel.socket.getSendBufferSize, writeBufferSize, connectTimeoutMs)) } catch { case _: Throwable => disconnect() } } } def disconnect() = lock synchronized { if(channel != null) { swallow(channel.close()) swallow(channel.socket.close()) channel = null writeChannel = null } // closing the main socket channel *should* close the read channel // but let's do it to be sure. if(readChannel != null) { swallow(readChannel.close()) readChannel = null } connected = false } def isConnected = connected def send(request: RequestOrResponse): Long = { if(!connected) throw new ClosedChannelException() val send = new RequestOrResponseSend(connectionId, request) send.writeCompletely(writeChannel) } def receive(): NetworkReceive = { if(!connected) throw new ClosedChannelException() val response = readCompletely(readChannel) response.payload().rewind() response } private def readCompletely(channel: ReadableByteChannel): NetworkReceive = { val response = new NetworkReceive while (!response.complete()) response.readFromReadableChannel(channel) response } }
3.通信过程
Kafka系统的通信框架也是经过了不同的版本迭代的。例如,在Kafka老的版本中,以NIO作为网络通信的基础,通过将多个Socket连接注册到一个Selector上进行监听,只用一个线程就能管理多个连接,这极大的节省了多线程的资源开销。
在Kafka之后的新版本中,依然以NIO作为网络通信的基础,也使用了Reactor多线程模型,不同的是,新版本将具体的业务处理模块(Handler模块)独立出去了,并用单独的线程池进行控制。如下图所示:
通过上图,我们可以总结一下Kafka的通信流程:
- Client向Server发送请求时,Acceptor负责接收TCP请求,连接成功后传递给Processor线程;
- Processor线程接收到新的连接后,将其注册到自身的Selector中,并监听READ事件
- 当Client在当前连接对象上写入数据时,会触发READ事件,根据TCP协议调用Handler进行处理
- Handler处理完成后,可能会有返回值给Client,并将Handler返回的结果绑定Response端进行发送
通过总结和分析,我们可以知道Kafka新版中独立Handler模块,用这样以下几点优势:
- 能够单独指定Handler的线程数,便于调优和管理
- 防止一个过大的请求阻塞一个Processor线程
- Request、Handler、Response之间都是通过队列来进行连接的,这样它们彼此之间不存在耦合现象,对提升Kafka系统的性能很有帮助
这里需要注意的是,在Kafka的网络通信中,RequestChannel为Processor线程与Handler线程之间数据交换提供了一个缓冲区,是通信中Request和Response缓存的地方。因此,其作用就是在通信中起到了一个数据缓冲队列的作用。Processor线程将读取到的请求添加至RequestChannel的全局队列(requestQueue)中,Handler线程从请求队列中获取并处理,处理完成后将Response添加至RequestChannel的响应队列(responseQueues)中,通过responseListeners唤醒对应的Processor线程,最后Processor线程从响应队列中取出后发送到Client。实现代码如下:
class RequestChannel(val numProcessors: Int, val queueSize: Int) extends KafkaMetricsGroup { private var responseListeners: List[(Int) => Unit] = Nil private val requestQueue = new ArrayBlockingQueue[RequestChannel.Request](queueSize) private val responseQueues = new Array[BlockingQueue[RequestChannel.Response]](numProcessors) for(i <- 0 until numProcessors) responseQueues(i) = new LinkedBlockingQueue[RequestChannel.Response]() newGauge( "RequestQueueSize", new Gauge[Int] { def value = requestQueue.size } ) newGauge("ResponseQueueSize", new Gauge[Int]{ def value = responseQueues.foldLeft(0) {(total, q) => total + q.size()} }) for (i <- 0 until numProcessors) { newGauge("ResponseQueueSize", new Gauge[Int] { def value = responseQueues(i).size() }, Map("processor" -> i.toString) ) } /** Send a request to be handled, potentially blocking until there is room in the queue for the request */ def sendRequest(request: RequestChannel.Request) { requestQueue.put(request) } /** Send a response back to the socket server to be sent over the network */ def sendResponse(response: RequestChannel.Response) { responseQueues(response.processor).put(response) for(onResponse <- responseListeners) onResponse(response.processor) } /** No operation to take for the request, need to read more over the network */ def noOperation(processor: Int, request: RequestChannel.Request) { responseQueues(processor).put(RequestChannel.Response(processor, request, null, RequestChannel.NoOpAction)) for(onResponse <- responseListeners) onResponse(processor) } /** Close the connection for the request */ def closeConnection(processor: Int, request: RequestChannel.Request) { responseQueues(processor).put(RequestChannel.Response(processor, request, null, RequestChannel.CloseConnectionAction)) for(onResponse <- responseListeners) onResponse(processor) } /** Get the next request or block until specified time has elapsed */ def receiveRequest(timeout: Long): RequestChannel.Request = requestQueue.poll(timeout, TimeUnit.MILLISECONDS) /** Get the next request or block until there is one */ def receiveRequest(): RequestChannel.Request = requestQueue.take() /** Get a response for the given processor if there is one */ def receiveResponse(processor: Int): RequestChannel.Response = { val response = responseQueues(processor).poll() if (response != null) response.request.responseDequeueTimeMs = Time.SYSTEM.milliseconds response } def addResponseListener(onResponse: Int => Unit) { responseListeners ::= onResponse } def shutdown() { requestQueue.clear() } }
4.总结
通过认真阅读和分析Kafka的网络通信层代码,可以收获不少关于NIO的网络通信知识。通过对Kafka的源代码进行阅读和学习,这对大规模Kafka集群性能的调优和问题定位排查是很有帮助的。
5.结束语
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
另外,博主出书了《Kafka并不难学》和《Hadoop大数据挖掘从入门到进阶实战》,喜欢的朋友或同学, 可以在公告栏那里点击购买链接购买博主的书进行学习,在此感谢大家的支持。关注下面公众号,根据提示,可免费获取书籍的教学视频。
原创文章,作者:1402239773,如若转载,请注明出处:https://blog.ytso.com/228115.html