今天就跟大家聊聊有关如何在Kuiper 中运行TensorFlow Lite 模型,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
EMQ X Kuiper 是一款边缘轻量级物联网数据分析/流软件,可在各种资源受限的物联网设备上运行。
TensorFlow Lite 是一组帮助开发人员在移动端、嵌入式和物联网设备上运行 TensorFlow 模型的工具,它使得设备上的机器学习预测具有低延迟和较小的二进制容量。
通过集成 Kuiper 和 TensorFlow Lite,用户可以通过包含预先构建的 TensorFlow 模型的 AI 分析流中的数据。 在本教程中,我们将引导您构建一个 kuiper 插件,通过预先训练的图像识别 TensorFlow 模型,标记边缘设备生成的流图片(二进制数据)。
条件准备
如需运行 TensorFlow Lite 解释器,我们需要一个经过训练的模型。本篇教程将不介绍如何训练和涵盖这个模型,您可以通过查看 tflite converter 了解详情。我们既可以训练一个新的模型,也可以在线选择一个。在本教程中,我们将使用 mattn/go tflite 的 label image 模型。该 repo 为 tflite C API 创建了 golang 绑定。我们还将使用它来实现我们的插件。
开发插件
为了集成 Kuiper 和 TensorFlow Lite,我们将开发一个定制的 Kuiper 函数插件,供 Kuiper 规则使用。例如,我们将创建 LabelImage
函数,其输入是表示图像的二进制类型数据,输出是表示图像标签的字符串。例如,如果输入图像中有孔雀,LabelImage(col)
将输出“孔雀”。
要开发函数插件,我们需要:
-
创建插件 go 文件。例如,在 kuiper 源代码中,创建 plugins/functions/labelImage/labelImage.go 文件。
-
创建一个实现 api.函数接口 的 struct。
-
导出 struct。
实现的关键是 Exec 函数。伪代码如下:
func (f *labelImage) Exec(args []interface{}, ctx api.FunctionContext) (interface{}, bool) { //... 初始化和验证 // 解码输入图像 img, _, err := image.Decode(bytes.NewReader(arg[0])) if err != nil { return err, false } var outerErr error f.once.Do(func() { // 加载标签、tflite模型并初始化tflite解释器 }) // 对输入图像运行解释器 // 返回可能性最大的标签 return result, true }
此外还需要注意插件的导出。该函数是无状态的,因此我们将仅导出一个 struct 实例。所有使用此函数的规则都会共享一个实例,以避免创建实例和加载模型的开销。模型和标签路径将在实例化时指定。
var LabelImage = labelImage{ modelPath: "labelImage/mobilenet_quant_v1_224.tflite", labelPath: "labelImage/labels.txt", }
查阅 本教程 以获得创建 Kuiper 插件的详细步骤。请参阅 labelImage.go 以获取完整的源代码。
构建并安装插件
要使用该插件,我们需要在运行 Kuiper 的环境中对其进行构建,然后将其安装在 Kuiper 中。
通过预构建的 zip 安装
如果使用基于 debian 的带有 1.1.1 或 1.1.1-slim标签的 Kuiper docker 镜像,我们可以安装预构建的 labelImage插件。例如,要在 docker image emqx/kuiper:1.1.2-slim 中安装 Kuiper 1.1.2 插件,则预构建的 zip 文件位于 https://www.emqx.io/downloads/kuiper-plugins/v1.1.2/debian/functions/labelImage_amd64.zip。按如下所示运行 rest命令以进行安装。
POST http://{{kuiperHost:kuiperRestPort}}/plugins/functions Content-Type: application/json {"name":"labelImage", "file": "https://www.emqx.io/downloads/kuiper-plugins/v1.1.2/debian/functions/labelImage_amd64.zip"}
手动构建
-
如果您不使用官方的 Kuiper docker 镜像运行 Kuiper,由于 golang 插件的限制,预构建的 labelImage 插件将不适用。您需要手动构建插件。手动创建插件 zip 文件有3个步骤:
-
构建 TensorFlowLite C API。
-
构建 labelImage 插件。
-
将插件与安装脚本打包在一起。
构建 TensorFlowLite C API
有一个来自 tensorflow repo 的关于构建C API的非常简单的 说明 。 我们将在本节中逐步详细展开。 请注意,该插件仅针对 TensorFlow v2.2.0-rc3 进行测试,因此我们将以此版本为基础进行构建。 以 ubuntu 为例,以下是构建步骤:
-
安装 Python 3.
-
将 requirements.txt 复制到您指定位置。 安装所需的 python 库:
pip3 install -r requirements.txt
。 requirements 来自相应 TensorFlow 版本的tensorflow/tensorflow/tools/pip_package/setup.py
。 -
安装 TensorFlow 的构建工具 Bazel。
-
克隆 tesorflow repo,通过
git checkout v2.2.0-rc3 -b mybranch
命令切换到所需的分支。 -
生成目标 .so 文件,输出将位于 ./bazel-bin 中。 将两个 so 文件复制到 tensorflow/lib 文件夹中。
$ cd $tensorflowSrc $ bazel build --config monolithic -c opt //tensorflow/lite:libtensorflowlite.so $ bazel build --config monolithic -c opt //tensorflow/lite/c:libtensorflowlite_c.so $ mkdir lib $ cp bazel-bin/tensorflow/lite/libtensorflowlite.so lib $ cp bazel-bin/tensorflow/lite/c/libtensorflowlite_c.so lib
-
安装 so 文件。
-
更新 ldconfig 文件
sudo vi / etc / ld.so.conf.d / tflite.conf
。 -
将路径
{{tensorflowPath}}/lib
添加到 tflite.conf,然后保存并退出。 -
运行 ldconfig:
sudo ldconfig
。 -
检查安装结果:
ldconfig -p | grep libtensorflow
。 确保列出了两个so文件。
构建 labelImage 插件
确保已克隆 Kuiper github repo。 插件源文件位于 plugins/functions/labelImage/labelImage.go 中。 在构建插件之前,导出 tensorflow repo 和构建库的路径。
$ cd {{kuiperRepoPath}} $ export CGO_CFLAGS=-I/root/tensorflow $ export CGO_LDFLAGS=-L/root/tensorflow/lib $ go build -trimpath --buildmode=plugin -o plugins/functions/LabelImage.so plugins/functions/labelImage/*.go
通过这些命令,插件将构建到 plugins/functions/LabelImage.so 中。出于开发目的,您可以重新启动 Kuiper 以自动加载此插件并进行测试。测试完成后,我们应该将其打包为一个 zip 文件,该文件可供 Kuiper 插件安装API 使用,以便可以在其他计算机(例如生产环境)中使用。
打包插件
将 plugins/functions/labelImage 目录中的所有文件和目录与构建的 LabelImage.so 一起打包到一个 zip 文件中。 zip文件的文件结构应类似于:
-
etc
-
labels.txt
-
mobilenet_quant_v1_224.tflite
-
lib
-
libtensorflowlite.so
-
libtensorflowlite_c.so
-
install.sh
-
LabelImage.so
-
tflite.conf
将打包的插件安装到目标系统,如 通过预构建 zip 安装 所示。
运行插件
插件安装后,我们就可以在规则中使用它了。 我们将创建一个规则用于接收来自 mqtt 主题的图像字节数据,并通过 tflite 模型标记该图像。
定义流
通过 Kuiper rest API 定义流。 我们创建一个名为 tfdemo 的流,其格式为二进制,主题为 tfdemo。
POST http://{{host}}/streams Content-Type: application/json {"sql":"CREATE STREAM tfdemo () WITH (DATASOURCE=/"tfdemo/", FORMAT=/"BINARY/")"}
定义规则
通过 Kuiper rest API 定义规则。 我们将创建一个名为 ruleTf 的规则。 我们只是从 tfdemo 流中读取图像,然后对其运行自定义函数 labelImage。 返回结果将是 AI 识别的图像的标签。
POST http://{{host}}/rules Content-Type: application/json { "id": "ruleTf", "sql": "SELECT labelImage(self) FROM tfdemo", "actions": [ { "log": {} } ] }
输入数据
在这里,我们创建了一个 go 程序,用于将图像数据发送到 tfdemo 主题以便由规则进行处理。
package main import ( "fmt" mqtt "github.com/eclipse/paho.mqtt.golang" "io/ioutil" "time" ) func main(){ const TOPIC = "tfdemo" images := []string{ "peacock.png", "frog.jpg", // 其他你需要的图像 } opts := mqtt.NewClientOptions().AddBroker("tcp://yourownhost:1883") client := mqtt.NewClient(opts) if token := client.Connect(); token.Wait() && token.Error() != nil { panic(token.Error()) } for _, image := range images { fmt.Println("Publishing " + image); payload, err := ioutil.ReadFile(image) if err != nil{ fmt.Println(err) continue } if token := client.Publish(TOPIC, 0, false, payload); token.Wait() && token.Error() != nil { fmt.Println(token.Error()) } else { fmt.Println("Published " + image); } time.Sleep(1 * time.Second) } client.Disconnect(0) }
运行 pub.go,它将开始将图像输入 tfdemo 主题。
检查结果
因为我们的规则定义只有一个目标:log,所以结果将被写入日志文件。 我们用 peacock.png 和 frog.png 两个图像填充流。 检查日志文件,我们会发现:
time="2021-02-05 16:23:29" level=info msg="sink result for rule ruleTf: [{/"labelImage/":/"peacock/"}]" file="sinks/log_sink.go:16" rule=ruleTf time="2021-02-05 16:23:30" level=info msg="sink result for rule ruleTf: [{/"labelImage/":/"bullfrog/"}]" file="sinks/log_sink.go:16" rule=ruleTf
图像标记正确。
看完上述内容,你们对如何在Kuiper 中运行TensorFlow Lite 模型有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。
原创文章,作者:6024010,如若转载,请注明出处:https://blog.ytso.com/230208.html