开发机器学习应用程序的基本流程

大家在了解了复杂的机器学习算法后,如何将它们应用到实践中呢?这就需要开发机器学习应用程序,本文我们就来说一下开发机器学习应用程序的基本流程。

开发机器学习应用程序的一般需要哪几个步骤

1) 收集数据

我们可以使用很多方法收集样本数据,例如:制作网络爬虫从网站上抽取数据、从RSS反馈或者API中得到信息、设备发送过来的实测数据(风速、血糖等)。

提取数据的方法非常多,为了节省时间与精力,可以使用公开可用的数据源。

2) 准备输入数据

得到数据之后,还必须确保数据格式符合要求,比如使用 Python 语言的 List 类型。使用 List 这种标准数据格式可以融合算法和数据源,方便匹配操作。

机器学习一般使用 Python 作为开发语言,不了解的读者请猛击《机器学习为什么使用 Python 语言?》进行学习。

此外还需要为机器学习算法准备特定的数据格式,如某些算法要求特征值使用特定的格式,一些算法要求目标变量和特征值是字符串类型,而另一些算法则可能要求是整数类型。

但是,与收集数据的格式相比,处理特殊算法要求的格式相对简单得多。

3) 分析输入数据

此步骤主要是人工分析以前得到的数据。为了确保前两步有效,最简单的方法是用文本编辑器打开数据文件,查看得到的数据是否为空值。

此外,还可以进一步浏览数据,分析是否可以识别出模式;数据中是否存在明显的异常值,如某些数据点与数据集中的其他值存在明显的差异。

通过一维、二维或三维图形展示数据也是不错的方法,然而大多数时候我们得到数据的特征值都不会低于三个,无法一次图形化展示所有特征。不过,使用某些提炼数据的方法,可以将多维数据压缩到二维或三维,方便我们图形化展示数据。

这一步的主要作用是确保数据集中没有垃圾数据。如果是在产品化系统中使用机器学习算法并且算法可以处理系统产生的数据格式,或者我们信任数据来源,可以直接跳过第3步。

此步骤需要人工干预,如果在自动化系统中还需要人工干预,显然就降低了系统的价值。

4) 训练算法

机器学习算法从这一步才真正开始学习。根据算法的不同,第4步和第5步是机器学习算法的核心。

我们将前两步得到的格式化数据输入到算法,从中抽取知识或信息。这里得到的知识需要存储为计算机可以处理的格式,方便后续步骤使用。

如果使用非监督学习算法,由于不存在目标变量值,故而也不需要训练算法,所有与算法相关的内容都集中在第5步。

5) 测试算法

这一步将实际使用第4步机器学习得到的知识信息。为了评估算法,必须测试算法工作的效果:

  • 对于监督学习,必须已知用于评估算法的目标变量值;
  • 对于非监督学习,也必须用其他的评测手段来检验算法的成功率。

无论哪种情形,如果不满意算法的输出结果,则可以回到第4步,改正并加以测试。

问题常常会跟数据的收集和准备有关,这时你就必须跳回第1步重新开始。

6) 使用算法

将机器学习算法转换为应用程序,执行实际任务,以检验上述步骤是否可以在实际环境中正常工作。此时如果碰到新的数据问题,同样需要重复执行上述的步骤。

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/23296.html

(0)
上一篇 2021年7月20日
下一篇 2021年7月20日

相关推荐

发表回复

登录后才能评论