5月22日,美国宇航局(NASA)尼尔-盖瑞尔斯威夫特天文台的太空望远镜在太空中一个极其遥远的角落发现了一个伽马射线暴,被称为GRB 200522A。科学家认为,这种类型的短爆发生在两颗中子星碰撞时,所以当望远镜看到其中一颗时,就会疯狂地争夺电磁波谱上其他波长的观测数据。有关的碰撞发生在大约55亿年前,但我们的望远镜现在才接收到这些信号。
在新的研究中,研究小组将一些不同的空间和地面望远镜指向GRB 200522A,包括NASA的哈勃太空望远镜,并观察了明亮的伽马射线爆发后的落差。利用X射线、射电和近红外数据,团队能够测量出伽马射线暴的亮度。但有一个特别的观测结果并不符合要求。来自哈勃的近红外图像显示了一个极其明亮的暴发–比以往看到的任何一颗千亿星都要亮10倍左右(尽管到目前为止只有少数几颗被观测到)。
“我们在一段时间内曾迷惑不解,并仔细研究了我们所掌握的所有可能的模型,”西北大学的天体物理学家、新研究的主要作者Wen-fai Fong说。“我们从GRB 200522A看到的近红外光太亮了,无法用标准的放射性动力千新星来解释。”
研究团队最终确定了一个被他们称为 “磁星助推的千新星 ”的模型来解释这种极端的亮度。两颗中子星在深空碰撞,可能产生了磁星。如果得到证实,这将是天文学家首次发现这些极端恒星的诞生。
当两个密度较大的宇宙天体– 如中子星和黑洞相互撞击时,就会产生千新星。合并的过程会向太空中喷射出大量的亚原子物质,包括产生伽马射线暴。Fong说,你可以把它想成是搅拌器里的冰沙,但你忘了盖上盖子,"富含中子 "的物质流向宇宙。
该团队的模型表明,磁星的产生可能会给千新星事件增压,使其远比天文学家预测的更亮。“如果得到证实,这将是我们第一次能够见证两颗中子星相撞后诞生磁星,”Fong说。
但研究人员还有一些工作要做。继续用射电望远镜观测GRB 200522A将有助于更清楚地确定在伽马射线暴周围究竟发生了什么。来自该事件的无线电波应该能够证实在红外波长下看到的东西,但这些波需要多长时间才能到达地球,这取决于GRB 200522A周围的环境。该模型表明,在人们接收到这样的信号之前,可能需要6年左右的时间,Fong表示,该团队将在未来数年内监测无线电发射。
长期以来,磁星一直是神秘的宇宙星体,但在上周,天文学家已经开始对这些难以捉摸的星体有了一些了解。上周,一个天体物理学家团队报告说,发现了银河系内的一颗磁星的快速射电暴(FRB)。这一重大发现表明,磁星有时可能会创造出这些神秘的射电信号,不过它们是否能创造出所有的FRB,目前还没有定论。GRB 200522A可能提供了一个再次检验这一假设的机会。
“如果我们能够将FRB与GRB 200522A的位置联系在一起,那将是一个惊人的发现,也确实是将这一特殊事件与磁星联系在一起的一把烟枪,”Fong说。然而,她提醒说,如果短伽马射线暴本身和FRB之间存在联系,那就令人惊讶了。但伽马射线暴确实不断抛出新的谜团和宇宙谜题来解决。"我研究同一种类型的爆炸已经有十年了,短伽马射线暴仍然能给我带来惊喜。"Fong指出。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/24607.html