今天讲个有趣的算法:如何快速求 /(n^m/),其中 n 和 m 都是整数。
为方便起见,此处假设 m >= 0,对于 m < 0 的情况,求出 /(n^{|m|}/) 后再取倒数即可。
另外此处暂不考虑结果越界的情况(超过 int64 范围)。
当然不能用编程语言的内置函数,我们只能用加减乘除来实现。
n 的 m 次方的数学含义是:m 个 n 相乘:n*n*n…*n,也就是说最简单的方式是执行 m 次乘法。
直接用乘法实现的问题是性能不高,其时间复杂度是 O(m),比如 /(3^{29}/) 要执行 29 次乘法,而乘法运算是相对比较重的,我们看看能否采用什么方法将时间复杂度降低。
设 m = x + y + z(x、y、z 都是整数),我们知道有如下数学等式: /(n^m/) = /(n^{x+y+z}/) = /(n^x * n^y * n^z/)。
也就是说,如果我们已经知道 /(n^x/)、/(n^y/)、/(n^z/) 的值,是不是就可以直接用他们相乘得出 /(n^m/)的结果?这样的话乘的次数就大大降低了。
于是问题就变成应该将 m 拆成怎样的几个数的和。
因为计算机是玩二进制的,我们尝试着将这些数跟 2 扯上联系(以 2 为底),看看会不会有奇迹发生。
我们看看具体的例子:/(3^{29}/)。
我们将 29 做这样的拆分:29 = 16 + 8 + 4 + 1。
这个拆分有什么特点呢?右边的数都是 2 的 X 次方(/(2^4 + 2^3 + 2^2 + 2^0/))。
我们把上面的拆分带进公式:/(3^{29} = 3^{16} * 3^{8} * 3^{4} * 3^{1}/)。
那我们能不能知道 /(3^{16}/)、/(3^{8}/)、/(3^{4}/)、/(3^{1}/) 是什么呢?
我们不用计算就知道 /(3^{1}/) 是什么——但仅此而已。
不过我们可以用 /(3^{1}/) 自乘 4 次的到 /(3^4/);然后再用 /(3^4/) 自乘得到 /(3^8/);再通过 /(3^8/) 自乘得到 /(3^{16}/)。
好像有点感觉了——我们每做一次乘法,就能将结果翻倍(如 /(3^4/) 自乘就变成 /(3^4*3^4 = 3^8/))。
如此,虽然也要多次乘法,但乘的次数从 29 次降到 9 次!
然后我们再回头看看上面的拆分:
29 = 16 + 8 + 4 + 1 = /(2^4 + 2^3 + 2^2 + 2^0/) = /(1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0/) 。
这不就是学校学的二进制转十进制吗(29 的二进制是 11101)?
/(3^{29} = 3^{16} * 3^{8} * 3^{4} * 3^{1}/) 是说:取 29 的二进制表示中所有值是 1 的位,算出它们的指数值并相乘就得到最终的值。
我们用 go 语言实现一下:
// 求 a 的 n 次方
// a、n 是非负整数
func Pow(a,n int64) int64 {
// 0 的任何次方都是 0
if a == 0 {
return 0
}
// 任何数的 0 次方都是 1
if n == 0 {
return 1
}
// 1 次方是它自身
if n == 1 {
return a
}
// 用滚雪球的方式计算幂
// 雪球初始值是 1
var result int64 = 1
// 滚动因子初始化为 a 的 1 次方(a 自身)
factor := a
// 循环处理直到 n 变成 0(所有的二进制位都处理完了)
for n != 0 {
// 跟 1 做与运算,判断当前要处理的位是不是 1
// 之所以是直接跟 1 做与运算,因为后面每处理一轮都将 n 右移了一位,保证每次要处理的位都在最低位
if n & 1 != 0 {
// 当前位是 1,需要乘进去
result *= factor
}
// 每轮结束时将滚动因子自乘
// 因为每行进一轮,指数都翻倍,整体结果就是自乘
// 比如本轮因子是 2**4,下一轮就是 2**8
// 2**8 = 2**(4+4) = 2**4 * 2**4
// (** 表示指数)
factor *= factor
// n 右移一位,将下一轮要处理的位放在最低位
n = n >> 1
}
return result
}
有什么用呢?
很多语言内置的 pow 函数都只接受浮点数,浮点数的运算是非常重的,如果我们的程序需要频繁计算整数的幂,就可以采用 quick pow 算法代替语言内置的幂函数以提升性能。
我们对 go 语言内置的 math.Pow 和 quick pow 算法做个性能测试对比一下。
// 测试 3 的 29 次方的性能测试
var benchPowB int64 = 3
var benchPowP int64 = 29
// 上面的 quick pow 算法
func BenchmarkQuickPow(b *testing.B) {
for i := 0; i < b.N; i++ {
algo.Pow(benchPowB, benchPowP)
}
}
// go 语言 math 包的 Pow 方法,只接受 float64 类型
func BenchmarkInnerPow(b *testing.B) {
x := float64(benchPowB)
y := float64(benchPowP)
for i := 0; i < b.N; i++ {
math.Pow(x, y)
}
}
// 用简单乘法实现(3 自乘 29 次)
func BenchmarkSimpleMulti(b *testing.B) {
for i := 0; i < b.N; i++ {
var r int64 = 1
var j int64 = 0
for ; j < benchPowP; j++ {
r *= benchPowB
}
}
}
测试结果:
goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
BenchmarkQuickPow-8 357897716 3.373 ns/op
BenchmarkInnerPow-8 39162492 29.30 ns/op
BenchmarkSimpleMulti-8 121066731 9.549 ns/op
PASS
ok command-line-arguments 4.894s
从性能测试结果看,quick pow 算法比简单乘法快了好几倍,比 math.pow 快了近 10 倍。
所以,如果程序只需要求整数幂,而且能确保计算结果不会越界时,可以考虑使用 quick pow 算法代替语言内置的浮点函数。
原创文章,作者:506227337,如若转载,请注明出处:https://blog.ytso.com/270753.html