1.插入数据
1. >>> import redis
2.
3. >>> conn = redis.Redis(host='192.168.8.176',port=6379)
4.
5. >>> pipe = conn.pipeline()
6.
7. >>> pipe.hset("hash_key","leizhu900516",8)
8. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
9.
10. >>> pipe.hset("hash_key","chenhuachao",9)
11. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
12.
13. >>> pipe.hset("hash_key","wanger",10)
14. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
15.
16. >>> pipe.execute()
17. [1L, 1L, 1L]
>>>
2.批量读取数据
1. >>> pipe.hget("hash_key","leizhu900516")
2. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
3.
4. >>> pipe.hget("hash_key","chenhuachao")
5. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
6.
7. >>> pipe.hget("hash_key","wanger")
8. Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
9.
10. >>> result = pipe.execute()
11.
12. >>> print result
13. ['8', '9', '10'] #有序的列表
14. >>>
3.###生产环境批量读写
总结:redis的pipeline就是这么简单,实际生产环境,
根据需要去编写相应的代码,思路同理。如下:
1. redis_db = redis.Redis(host='127.0.0.1',port=6379)
2. data = ['zhangsan', 'lisi', 'wangwu']
3.
4. with redis_db.pipeline(transaction=False) as pipe:
5. for i in data:
6. pipe.zscore(self.key, i)
7.
8. result = pipe.execute()
9.
10. print result
11. # [100, 80, 78]
线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定
pipe =conn.pipeline(transaction=False)
经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。
原创文章,作者:wure,如若转载,请注明出处:https://blog.ytso.com/272958.html