基于python的数学建模—高阶样条插值


  • 为了满足对函数光滑性的需要,我们可以使用一种有弹性的长条(称之为样条),强迫它弯曲通过样本点。
  • import numpy as np
    import matplotlib.pylab as pl
    from scipy import interpolate

    x = np.linspace(0, 10, 11)
    y = np.sin(x)

    pl.figure(figsize=(12, 9))
    pl.plot(x, y, 'ro')
    x_new = np.linspace(0, 10, 101)

    for kind in ['nearest', 'zero', 'linear', 'quadratic', 5]:  #零阶,零阶,一阶,三阶,五阶
    f = interpolate.interp1d(x, y, kind=kind)
    y_new = f(x_new)
    pl.plot(x_new, y_new, label=str(kind))
    pl.xticks(fontsize=20)
    pl.yticks(fontsize=20)
  • #标签坐落于右下方
    pl.legend(loc='lower right')
    pl.show()
  • 基于python的数学建模---高阶样条插值

     

     

原创文章,作者:254126420,如若转载,请注明出处:https://blog.ytso.com/277288.html

(0)
上一篇 2022年7月27日
下一篇 2022年7月27日

相关推荐

发表回复

登录后才能评论