Linux0.11源码学习(二)


Linux0.11源码学习(二)

linux0.11源码学习笔记
参考资料:https://github.com/sunym1993/flash-linux0.11-talk
源码查看:https://elixir.bootlin.com/linux/latest/source

/boot/setup.s

entry start
start:

! ok, the read went well so we get current cursor position and save it for
! posterity.

	mov	ax,#INITSEG	! this is done in bootsect already, but...
	mov	ds,ax
	mov	ah,#0x03	! read cursor pos
	xor	bh,bh
	int	0x10		! save it in known place, con_init fetches
	mov	[0],dx		! it from 0x90000.

含义:
触发 BIOS 提供的显示服务中断处理程序,而 ah 寄存器被赋值为 0x03 表示显示服务里具体的读取光标位置功能。这个 int 0x10 中断程序执行完毕并返回时,dx 寄存器里的值表示光标的位置,具体说来其高八位 dh 存储了行号,低八位 dl 存储了列号。

ps:计算机在加电自检后会自动初始化到文字模式,在这种模式下,一屏幕可以显示 25 行,每行 80 个字符,也就是 80 列。

mov [0],dx 就是把这个光标位置存储在 [0] 这个内存地址处。最终的内存地址是在 0x90000 处,这里存放着光标的位置,以便之后在初始化控制台的时候用到。


! Get memory size (extended mem, kB) 获取内存信息。

	mov	ah,#0x88
	int	0x15
	mov	[2],ax

! Get video-card data:  获取显卡显示模式。

	mov	ah,#0x0f
	int	0x10
	mov	[4],bx		! bh = display page
	mov	[6],ax		! al = video mode, ah = window width

! check for EGA/VGA and some config parameters 检查显示方式并取参数

	mov	ah,#0x12
	mov	bl,#0x10
	int	0x10
	mov	[8],ax
	mov	[10],bx
	mov	[12],cx

! Get hd0 data  获取第一块硬盘的信息。

	mov	ax,#0x0000
	mov	ds,ax
	lds	si,[4*0x41]
	mov	ax,#INITSEG
	mov	es,ax
	mov	di,#0x0080
	mov	cx,#0x10
	rep
	movsb

! Get hd1 data  获取第二块硬盘的信息。

	mov	ax,#0x0000
	mov	ds,ax
	lds	si,[4*0x46]
	mov	ax,#INITSEG
	mov	es,ax
	mov	di,#0x0090
	mov	cx,#0x10
	rep
	movsb

含义:
程序方法与上述相同,就是调用一个 BIOS 中断获取点什么信息,然后存储在内存中某个位置。

上述程序我们能够知道被存到内存的信息是什么:

内存地址 长度(字节) 名称
0x90000 2 光标位置
0x90002 2 扩展内存数
0x90004 2 显示页面
0x90006 1 显示模式
0x90007 1 字符列数
0x90008 2 未知
0x9000A 1 显示内存
0x9000B 1 显示状态
0x9000C 2 显卡特性参数
0x9000E 1 屏幕行数
0x9000F 1 屏幕列数
0x90080 16 硬盘1参数表
0x90090 16 硬盘2参数表
0x900FC 2 根设备号

这里的信息被约定好使用一个确定的内存地址,便于汇编语言和c语言同时编程。


! now we want to move to protected mode ...

	cli			! no interrupts allowed !

解释:

关闭中断。

因为后面我们要把原本是 BIOS 写好的中断向量表给覆盖掉,也就是给破坏掉了,写上我们自己的中断向量表,所以这个时候是不允许中断进来的。


! first we move the system to it's rightful place

	mov	ax,#0x0000
	cld			! 'direction'=0, movs moves forward
do_move:
	mov	es,ax		! destination segment
	add	ax,#0x1000
	cmp	ax,#0x9000
	jz	end_move
	mov	ds,ax		! source segment
	sub	di,di
	sub	si,si
	mov 	cx,#0x8000
	rep
	movsw
	jmp	do_move

! then we load the segment descriptors

end_move:

解释:
rep 表示重复执行后面的指令,这里表示重复执行movsw。
rep movsw 同前面的原理一样,也是做了个内存复制操作。最终的结果是,把内存地址 0x10000 处开始往后一直到 0x90000 的内容,统统复制到内存的最开始的 0 位置。

图解:

img

栈顶地址仍然是 0x9FF00 没有改变。

0x90000 开始往上的位置,原来是 bootsect 和 setup 程序的代码,现 bootsect 的一部分代码在已经被操作系统为了记录内存、硬盘、显卡等一些临时存放的数据给覆盖了一部分。

内存最开始的 0 到 0x80000 这 512K 被 system 模块给占用了,之前讲过,这个 system 模块就是除了 bootsect 和 setup 之外的全部程序链接在一起的结果,可以理解为操作系统的全部。

那么现在的内存布局就是这个样子。

img


end_move:
	mov	ax,#SETUPSEG	! right, forgot this at first. didn't work :-)
	mov	ds,ax
	lidt	idt_48		! load idt with 0,0
	lgdt	gdt_48		! load gdt with whatever appropriate

...
...

idt_48:
	.word	0			! idt limit=0
	.word	0,0			! idt base=0L

gdt_48:
	.word	0x800		! gdt limit=2048, 256 GDT entries
	.word	512+gdt,0x9	! gdt base = 0X9xxxx

解释:
lidt idt_48 表示把idt_48放在 idtr 寄存器中

idtr寄存器存储的是中断描述符表

lgdt gdt_48 表示把gdt_48放在 gdtr 寄存器中。

其实这段代码是为了开启cpu的保护模式做准备,由于intel的历史遗留问题,cpu的实模式和保护模式的寻址方式不同。实模式是段基址左移4位加偏移地址,即ds<<4+[偏移地址]。保护模式是,在段寄存器(比如 ds、ss、cs)里存储段选择子,段选择子去全局描述符表中寻找段描述符,从中取出段基址,再和偏移地址相加。

图解:

img


gdt:
	.word	0,0,0,0		! dummy

	.word	0x07FF		! 8Mb - limit=2047 (2048*4096=8Mb)
	.word	0x0000		! base address=0
	.word	0x9A00		! code read/exec
	.word	0x00C0		! granularity=4096, 386

	.word	0x07FF		! 8Mb - limit=2047 (2048*4096=8Mb)
	.word	0x0000		! base address=0
	.word	0x9200		! data read/write
	.word	0x00C0		! granularity=4096, 386

解释:

gdt 这个标签处,就是全局描述符表在内存中的真正数据了。

图解:

img


	mov	al,#0xD1		! command write
	out	#0x64,al
	mov	al,#0xDF		! A20 on
	out	#0x60,al

解释:

简单理解,这一步就是为了突破地址信号线 20 位的宽度,变成 32 位可用。


! well, that went ok, I hope. Now we have to reprogram the interrupts :-(
! we put them right after the intel-reserved hardware interrupts, at
! int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
! messed this up with the original PC, and they haven't been able to
! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
! which is used for the internal hardware interrupts as well. We just
! have to reprogram the 8259's, and it isn't fun.

	mov	al,#0x11		! initialization sequence
	out	#0x20,al		! send it to 8259A-1
	.word	0x00eb,0x00eb		! jmp $+2, jmp $+2
	out	#0xA0,al		! and to 8259A-2
	.word	0x00eb,0x00eb
	mov	al,#0x20		! start of hardware int's (0x20)
	out	#0x21,al
	.word	0x00eb,0x00eb
	mov	al,#0x28		! start of hardware int's 2 (0x28)
	out	#0xA1,al
	.word	0x00eb,0x00eb
	mov	al,#0x04		! 8259-1 is master
	out	#0x21,al
	.word	0x00eb,0x00eb
	mov	al,#0x02		! 8259-2 is slave
	out	#0xA1,al
	.word	0x00eb,0x00eb
	mov	al,#0x01		! 8086 mode for both
	out	#0x21,al
	.word	0x00eb,0x00eb
	out	#0xA1,al
	.word	0x00eb,0x00eb
	mov	al,#0xFF		! mask off all interrupts for now
	out	#0x21,al
	.word	0x00eb,0x00eb
	out	#0xA1,al

解释:

看注释,这是对可编程中断控制器 8259 芯片编程,8259是啥就不解释了。


! well, that certainly wasn't fun :-(. Hopefully it works, and we don't
! need no steenking BIOS anyway (except for the initial loading :-).
! The BIOS-routine wants lots of unnecessary data, and it's less
! "interesting" anyway. This is how REAL programmers do it.
!
! Well, now's the time to actually move into protected mode. To make
! things as simple as possible, we do no register set-up or anything,
! we let the gnu-compiled 32-bit programs do that. We just jump to
! absolute address 0x00000, in 32-bit protected mode.

	mov	ax,#0x0001	! protected mode (PE) bit
	lmsw	ax		! This is it!
	jmpi	0,8		! jmp offset 0 of segment 8 (cs)

解释:

前两行,将 cr0 这个寄存器的位 0 置 1,模式就从实模式切换到保护模式了。

再往后,又是一个段间跳转指令 jmpi,后面的 8 表示 cs(代码段寄存器)的值,0 表示偏移地址。请注意,此时已经是保护模式了,之前也说过,保护模式下内存寻址方式变了,段寄存器里的值被当做段选择子。

8 用二进制表示就是
00000,0000,0000,1000

对照上面段选择子的结构,可以知道描述符索引值是 1,也就是要去全局描述符表(gdt)中找第一项段描述符。

gdt:
	.word	0,0,0,0		! dummy

	.word	0x07FF		! 8Mb - limit=2047 (2048*4096=8Mb)
	.word	0x0000		! base address=0
	.word	0x9A00		! code read/exec
	.word	0x00C0		! granularity=4096, 386

	.word	0x07FF		! 8Mb - limit=2047 (2048*4096=8Mb)
	.word	0x0000		! base address=0
	.word	0x9200		! data read/write
	.word	0x00C0		! granularity=4096, 386

注意,段描述符是32位数,从代码看,就是每4个字节为一个段描述符。

这里取的第2个段描述符就是代码段描述符,从代码看就是的5个.word到第8个.word。段基址是 0,偏移也是 0,那加一块就还是 0 咯,所以最终这个跳转指令,就是跳转到内存地址的 0 地址处,开始执行。

目前内存的状态:

img

system 模块怎么生成的呢?由 Makefile 文件可知,是由 head.s 和 main.c 以及其余各模块的操作系统代码合并来的,可以理解为操作系统的全部核心代码编译后的结果。

我们说,最后一行代码让cpu跳到内存地址的0号处执行,也就是boot/head.s文件所描述的。

原创文章,作者:745907710,如若转载,请注明出处:https://blog.ytso.com/278506.html

(0)
上一篇 2022年8月2日
下一篇 2022年8月2日

相关推荐

发表回复

登录后才能评论