The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n1^P + … nK^P
where ni (i=1, … K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen — sequence { a1, a2, … aK } is said to be larger than { b1, b2, … bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL
If there is no solution, simple output “Impossible”.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
题目大意:给三个正整数N、K、P,将N表示成K个正整数(可以相同,递减排列)的P次方和,如果有多种方案,选择底数n1+…+nk最大的方案,如果还有多种方案,选择底数序列的字典序最大的方案~
分析:dfs深度优先搜索。先把i从0开始所有的i的p次方的值存储在v[i]中,直到v[i] > n为止。然后深度优先搜索,记录当前正在相加的index(即v[i]的i的值),当前的总和tempSum,当前K的总个数tempK,以及因为题目中要求输出因子的和最大的那个,所以保存一个facSum为当前因子的和,让它和maxFacSum比较,如果比maxFacSum大就更新maxFacSum和要求的ans数组的值。
在ans数组里面存储因子的序列,tempAns为当前深度优先遍历而来的序列,从v[i]的最后一个index开始一直到index == 1,因为这样才能保证ans和tempAns数组里面保存的是从大到小的因子的顺序。一开始maxFacSum == -1,如果dfs后maxFacSum并没有被更新,还是-1,那么就输出Impossible,否则输出答案。
(PS:感谢github用户littlesevenmo提供的更优解)
分析:这道题考的是DFS+剪枝,我认为主要剪枝的地方有三个:
1. tempK==K但是tempSum!=n的时候需要剪枝
2. 在枚举的时候,按顺序枚举,上界或者下界可进行剪枝
3. 当且仅当tempSum + v[index] <= n时,进行下一层的DFS,而不要进入下一层DFS发现不满足条件再返回,这样开销会比较大~
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 #include <iostream> #include <vector> #include <cmath> using namespace std; int n, k, p, maxFacSum = -1; vector<int> v, ans, tempAns; void init() { int temp = 0, index = 1; while (temp <= n) { v.push_back(temp); temp = pow(index, p); index++; } } void dfs(int index, int tempSum, int tempK, int facSum) { if (tempK == k) { if (tempSum == n && facSum > maxFacSum) { ans = tempAns; maxFacSum = facSum; } return; } while(index >= 1) { if (tempSum + v[index] <= n) { tempAns[tempK] = index; dfs(index, tempSum + v[index], tempK + 1, facSum + index); } if (index == 1) return; index--; } } int main() { scanf("%d%d%d", &n, &k, &p); init(); tempAns.resize(k); dfs(v.size() - 1, 0, 0, 0); if (maxFacSum == -1) { printf("Impossible"); return 0; } printf("%d = ", n); for (int i = 0; i < ans.size(); i++) { if (i != 0) printf(" + "); printf("%d^%d", ans[i], p); } return 0; }
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/279654.html