拆点 + 最大流
G – Erasing Prime Pairs (atcoder.jp)
题意
有 n(n <= 100)种互不相同的数,分别是 /(A[i]/) (<=1e7), 每个有 /(B[i]/) 个
每次可以任意取两个数,如果相加是素数就消去这两个数,求最多操作次数
思路
思路一、
- 不考虑 1 + 1 = 2 出现偶素数,可以将奇数,偶数分开,能消掉的连边,形成二分图,跑一下最大流即可
- 考虑 1 + 1 = 2,可以设有 x 次 1 + 1 的操作,可以证明最多次数随 x 是单峰函数,三分即可
思路二、
对于每个点都拆成入点和出点(解决了两个相同的数相加构成素数的情况),直接跑最大流,结果除以二即可
#include <bits/stdc++.h>
#define itn int
#define int long long
#define endl "/n"
#define PII pair<int, int>
using namespace std;
const int N = 1010;
const int M = 2e7 + 10;
const itn inf = 0x3f3f3f;
const int mod = 998244353;
// const int mod = 1e9 + 7;
int n, m, s, t;
struct Edge {
int from, to, cap, flow;
Edge(int f, int t, int c, int fl) {
from = f;
to = t;
cap = c;
flow = fl;
}
};
struct Dinic {
int n, m, s, t; //结点数,边数(包括反向弧),源点编号和汇点编号
vector<Edge> edges; //边表。edge[e]和edge[e^1]互为反向弧
vector<int> G[N]; //邻接表,G[i][j]表示节点i和第j条边在e数组中的序号
bool vis[N]; // BFS使用
int d[N]; //从起点到i的距离
int cur[N]; //当前弧下标
void clear_all(int n) {
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
}
void clear_flow() {
int len = edges.size();
for (int i = 0; i < len; i++)
edges[i].flow = 0;
}
void add_edge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
int len = G[x].size();
for (int i = 0; i < len; i++) {
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)
return a;
int flow = 0, f, len = G[x].size();
for (int& i = cur[x]; i < len; i++) {
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] &&
(f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0)
break;
}
}
return flow;
}
int maxflow(int s, int t) {
this->s = s;
this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, inf);
}
return flow;
}
int mincut() { // call this after maxflow
int ans = 0;
int len = edges.size();
for (int i = 0; i < len; i++) {
Edge& e = edges[i];
if (vis[e.from] && !vis[e.to] && e.cap > 0)
ans++;
}
return ans;
}
void reduce() {
int len = edges.size();
for (int i = 0; i < len; i++)
edges[i].cap -= edges[i].flow;
}
} dinic;
bool vis[M], isprime[M];
void init() {
for (int i = 2; i <= M; i++) {
if (vis[i])
continue;
isprime[i] = 1;
for (int j = i + i; j <= M; j += i)
vis[j] = 1;
}
}
int a[N], b[N];
void solve() {
itn n;
cin >> n;
init();
int S = 0, T = 2 * n + 1;
for (int i = 1; i <= n; i++) {
cin >> a[i] >> b[i];
dinic.add_edge(S, i, b[i]);
dinic.add_edge(i + n, T, b[i]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (isprime[a[i] + a[j]])
dinic.add_edge(i, j + n, 1e18);
}
}
cout << dinic.maxflow(S, T) / 2 << endl;
}
signed main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(12);
solve();
return 0;
}
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/288336.html