AI中台如何搭建?

01 为什么要去建 AI 中台?

数据变成企业资产是大家的共识,但现在我们发现模型已经成为影响企业竞争力的一个重要资产。

越来越多的企业需要面临很多的复杂决策,这些决策不是拍脑袋做的,需要依赖一些决策模型,所以这些模型会越发重要,成为企业当中的一个重要资产。以前的模型相对较简单,可能通过一些回归或者简单的方法,就能够做出来。但现在随着 AI 的发展,模型的复杂度在逐渐递增,且更新的速度也很快,所以如何针对业务,更好地管理模型,将会是企业的核心竞争力。

除此之外,如果单独有模型,不能构成最终的价值闭环,最终都要服务于业务。在与一些企业交流时,发现 AI 模型在实际业务当中,其实是“神秘的黑盒”。许多算法团队,经常是“拿着锤子找钉子”,并不知道模型在业务当中会有什么用。

站在业务的视角,大家会经历心理学上的一个名词,“从愚昧山峰”到“绝望之谷”。因为大家对于 AI 是充满幻想的,认为有了 AI 就可以解决任何问题,对于 AI 有很高的预期。但直接跟算法团队交流的时候,可能会遇到很多的问题,比如业务问题对应了哪些历史业务数据,哪些业务数据是清洗标注过代表增长的,这时会感觉, AI 好像花瓶一样,需要人工才有对应的智能,听到这样的评价,就会陷入到绝望之谷。不论在算法团队,还是在业务团队,如果很难形成协同上的认知,就不能形成相应的共识,也没有办法在真正意义上,将 AI 落地到一些比较重要的业务场景当中。

从另外一个视角,有一些企业 AI 的模型跑起来了,但这样的模型更多是由算法驱动或者技术驱动做的,经常会遇到一个问题:业务定个新的 KPI,模型可能就会失效。比如一开始是针对现在的业务受众做的,但在新的季度,某个业务需要换一些受众画像与方向,就会发现之前的预测模型完全失效了。大家的目标没有在前期拉齐,这个面向未来的模型,就没有办法给大家带来对应的泛化性结果。如果没有建立起一个能连接各个团队的 AI 中台,就会带来这样的问题。

在大模型的发展过程中,如何看待大模型和 AI 中台的关系?许多企业不应该去考虑如何训练大模型,而是如何去利用大模型。随着大模型的发展,尤其像AI agent 相关技术的提出,用好大模型需要考虑企业有多少的 know how未来可以更好的模型化、工具化被大模型调用,这些才是企业真正的经验与知识。所以说现在用 AI 中台可以更好地整合内部已有的模型,把一些好的决策,好的方法模型化、工具化之后,随着AI大面积发展,整个企业可以更好地智能化运行。

AI中台如何搭建?

什么是AI中台?初期AI中台主要专注模型的全生命周期管理,受众更多是面向算法团队。上图是基于 ModelOps 的一条流程,它所定义的是从模型开发到部署的全生命周期管理。现在 AI 算法从 1.0 – 2.0 方向发展,AI 中台本身也一样,不是单纯管理一个开发流程,能够发挥多少 AI 中台的能力,决定于有多少业务团队能够使用AI。所以建立整个 AI 中台的目标,在于有多少 AI 的能力能够被构建出来、能够被管理起来、能够面向业务开放起来,打通从数据到模型到最后决策的全链路。

02 如何构建AI中台

当前在讨论 AI 中台的时候,更多的是关注业务如何去使用的视角,那如何去建?会遇到哪些问题?因为企业内部决策链路复杂,算法团队、数据团队、IT团队、业务团队的视角不同,要去平衡的是企业内部最核心的各个团队当中的声音。我们需要让 AI 发挥作用,就要去思考还有哪些模型需要去被管理起来?它的受众有哪一些?企业未来有多少人能够去用它?如何评估平台的ROI?

AI中台如何搭建?

首先建 AI 中台其实是一把手工程,作为企业一号位的人员,需要与高管团队讨论,如何建立围绕数据跟模型的企业竞争力。当只有这样的事情在企业内部去确认的时候,这家公司的 AI 中台才有可能建立得起来,因为AI 中台会变成公司的战略、公司的文化、公司竞争力去构建,各个团队才有可能去思考 AI 跟业务的关系。

这是我们发现很重要的一个前提,需要把它当做一把手工程去建立。

在建 AI 中台的时候,作为一家企业,哪些模型资产需要被考虑?我们将其中模型分成三大类,第一大类认为它可能不是 AI 模型,而是公司非常重要的、数据驱动的核心业务模型,因为这些模型是能够拉动所有业务的毛细血管。这样的模型盘点一般是由业务团队牵头,考虑模型如何被管理跟调用起来。

第二类传统意义上的 AI 模型,更多是一些预测类模型或者分类模型,这种模型逐步变得复杂,业务人员没有办法去构建,需要算法团队专人负责,所以从算法团队的视角,需要考虑管理哪些传统AI预测类模型。

第三类大模型,对于这类模型,需要从不断去学习和利用的视角去管理,哪些大模型未来可以怎么去使用。

AI中台如何搭建?

对企业的模型进行相关盘点之后,才能知道 AI 中台该去管理哪些模型。接着应该梳理工作流,首先把人群分画像,对于业务人员平时会怎么去用数据?算法团队怎么去构建模型?构建出来之后跟基础设施、业务团队要怎么去交互?过程中哪些用户、工作环节需要被利用到?还要考虑有对应的能力提升平台,帮助能力不足的员工不断成长。这些都是需要在内部做核心路径的梳理。

经历完前面的介绍,会发现这是一个非常庞大的架构,并且对于企业是很重要的事情。如果想要快速把事情做成,是很困难的。最好的做 AI 中台的方式,就是基于敏捷做构建。其中最重要的点就是设计 MVP 的场景,半自动地跑通基于 AI 中台的价值闭环。

在场景设计中,首先考虑的是“M-Minimum”最小化,尽量减少与一些历史技术栈或复杂业务耦合,侧重快速跑通它本身的能力,为内部建立信心,后面再考虑调整数据端的基础设施,找到最小化的场景。

最后考虑关于 “V-Vlable” 价值点,它需要足够典型,这件事情跑通之后能够给其他人展现出的价值是什么?开始去建 AI 中台的时候,要去找MVP,给内部有信心去推广平台。

跑通 MVP 之后,并非代表 AI 中台就建成了,后面需要去推广整个平台在整个企业当中的利用。

AI中台如何搭建?

在平台推广过程当中的决定性因素是人,有多少人愿意去接受新事物。

有个很好的概念——“公民数据科学家”,定义为能够使用高级方法去解决实际业务的人。最后我们会发现 AI 中台能够创造多少的价值,取决于企业当中有多少“公民数据科学家”,有多少在业务中懂得 AI具体用处,能够参与到模型流程当中的人。所以应该把平台的建设跟人才的培养相结合,才是整个平台最终能够达到多元的重要因素。

AI中台如何搭建?

基于挑战任务的实践是企业 AI 应用人才培养的有效途径,将企业中遇到的某些重要的问题,判断它通过 AI 可能会解决,将问题抛出来,希望企业中的人能够一起参与进来,比如用 Python 或者简单模型去建立,这时大家会有更好的驱动力去学习。把这些问题解决时,大家的参与感是非常强的,因为是基于真实问题、真实场景,能够感受到在掌握某个知识的之后,是可以起到真实价值的。

企业在推进这件事情的过程中,很自然就将 AI 中台推广出去了,因为大家处理相关任务时,就会利用在 AI 中台上所集成的某些数据、某部分模型的能力作为脚手架接着往下走。所以我们发现这是在内部做人才培养非常好的方式方法。

03 案例介绍

与某三甲医院的合作,是一个非常典型的例子。

他们医学的业务某种程度上是传统的治病救人,医院之前也积累了对应的医疗数据,人工智能对他们来说是新的方法新的能力。

如何去构建这样的能力?首先医院内部数据很多,并且在前期做了很多的探索,分析数据的过程中慢慢发现有许多的问题。

AI中台如何搭建?

第一点,医院相关分析人员需要在了解医学的基础上,还能够了解 AI 模型的相关方法,对应人才的内部培养周期很长,所以当一个人掌握了相关信息之后,另外一个人想要参与进来进行相关课题的合作的时候,又得重新开始做数据采集、环境搭建,重复从 0 到 1 的去做很多的事情,所以效率很低。

第二点,讨论模型最后能产生多大价值的时候,其实都是需要看临床医生能不能提出好的问题,能不能应用到一些好的临床研究当中。临床医生作为业务人员,早期很难参与进来,所以他们希望有一个平台,能够看到已经有哪些模型哪些方法应用在哪些相关项目的哪些流程,这样这批人才能够在自己的研究中更深入地参与到模型的构建。

第三点,医院作为一个组织,自身很难能够完成所有模型构建的相关工作,希望利用合作伙伴,包括合作高校、其他的合作医院、药企一起在一个平台当中去贡献、去优化相关的模型。所以根据上述视角,他们便有了建设AI 中台的必要性。

合作过程中,分享一些他们的好的实践。

首先他们成立了医学人工智能研究中心,在有对应中心的情况下,就有对应的组织实体进行自上而下地推进,先解决平台应该谁来建的问题。

其次在医疗中有很多的场景,需要考虑在哪些场景先做尝试,所以在内部盘点了不同的应用场景后,找到并明确的 MVP场景叫做可穿戴设备分析引擎。选择这个场景的原因是相关积累较为成熟,遇到的问题也更加典型,就可以更快梳理出架构,而且可穿戴设备的非结构化数据更需要采用高级方法做数据挖掘,没有办法通过人工或简单工具做数据洞察。然后进行场景的“引擎化”设计,引擎化的目标是将可穿戴设备分析中的不同流程承接到平台之后,未来产生新的问题或新的方法都应该只是引擎的一部分,不需要进行重复劳作,所以形成了一个明确定位。

第一步,客户花了很多时间做整个流程具象化,包括会分成几个流程,每个流程有相关点,在这些点里面可能会用到什么样的模型,将对应的模型盘点跟分类,找出复用度最高可以完全标准化的环节。

第二步,盘点哪些模型需要业务人员参与进行微调,比如需要临床医生再判断选择哪些参数,把它当做一种高通用型模型。

第三步,通过模板化,进行沉淀,重新对模型进行分门别类。

AI中台如何搭建?

右图就是在实际的研究当中,利用之前梳理出来的模块,在新的研究中就可以非常快速的开展,只需要调整里面某些特定参数或简单增加几个步骤,就可以完成一次新的分析,这就是通过引擎化设计所带来的效果。

平台建设也会遇到不同的挑战,最大的挑战会是,在一个场景验证成功后,如何让别人知道AI 平台怎么用?怎么让其他的临床医生也愿意参与这样一个全新的东西?

AI中台如何搭建?

这时内部要去设计相关事情,我们一起把整个 AI 中台的推广分成“起承转合”四个环节,MVP只是一开始的工作,叫做“起”,是让工作上平台,打通人跟数据、环境的问题。

若想让它发挥效应的话叫“承“,承载出之前已有的一些协作,将第一个环节所产生的结果、之前的协作流程、相关的协同人员再引入进来,会变成第二批的参与受众,这时就把以前课题组内的研究变成一个跨部门的研究,很容易形成跨部门的效果。

第三块才能够往上”转“,这时形成对应的管理流程,很容易让决策人更好地感知到一些点,而且由于跑通了一些跨部门实践,这时在其他业务、其他的应用场景当中,希望用已经跑通的实践去完成,可以用一些管理的方法。

最后再把对应的成果,比较好的整合呈现,这是他们在思考的一个路径。

AI中台如何搭建?

除此之外,他们希望能够在内部培养更多可以使用 AI 中台的人。

在做关于人才盘点时,把内部做 AI 人才划分,具体有关键人才——掌握AI方法的人、高潜力人才——有办法在业务当中参与模型设计的人、数字化用户——最后享受相关场景的一些人,做对应的划分,再根据不同的研究方向、不同的应用场景,进行领域场景的分类。开展内部基于挑战性问题的训练营设计,将内部人才的培养与整个平台的建设合在一起去完成。

现在从内部设备分析引擎,上升到整个真实世界数据研究,形成医疗体系的研究范式跟方法。

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/313207.html

(0)
上一篇 2024年4月28日
下一篇 2024年4月28日

相关推荐

发表回复

登录后才能评论