超级电容器几乎可以在瞬间充电,并在需要时释放出巨大的能量,是一种具有巨大潜力的储能技术。我们已经看到了一些有趣的进展,用可持续材料制造设备,包括循环利用的塑料瓶、大麻甚至废弃的烟头。
德克萨斯农工大学的团队希望利用一种天然聚合物,这种称为木质素的聚合物赋予植物和树木以刚性,。这是由造纸行业作为废品大量生产的,实际上我们已经看到了一些有趣的突破,努力将这种聚合物回收到其他产品中,例如更坚固的混凝土和3D打印的生物浆。
然而,新研究的作者希望用它来为一种用于超级电容器电极的材料–二氧化锰。与其他解决方案相比,这种化合物的纳米颗粒提供了许多好处,但电化学性能是它们倾向于下降的地方。
“与其他过渡金属氧化物(如钌或氧化锌)相比,二氧化锰更便宜,可获得性丰富,而且更安全,这些过渡金属氧化物被普遍用于制造电极,”研究作者梁宏说。“但二氧化锰的一个主要缺点是它的导电性较低。”
此前的研究表明,木质素与金属氧化物的结合可以提升超级电容器电极的电性能,但该团队希望研究如何能具体增强二氧化锰的功能。于是他们设计了一种超级电容器,其中这两种成分构成了关键的构件。
该团队首先在普通消毒剂中净化木质素,然后施加热量和压力,使液体分解,使二氧化锰沉积在木质素上。然后用这种混合物涂覆铝板形成电极,再与另一个由铝和活性炭制成的电极配对形成超级电容器,中间夹着凝胶电解质。
研究人员介绍说,这种新装置轻巧、灵活、成本效益高,增加了其作为汽车结构储能元件的潜力。他们还报告说,它在测试中经受住了极好的考验,发现它具有“非常稳定的电化学特性”,并且在数千次循环中保持了存储电荷的能力。
研究人员通过现有的文献,将其性能与其他先进的超级电容器设计进行了比较,包括那些电极完全由活性炭制成的超级电容器,或石墨烯与其他材料结合的超级电容器。在电容方面,它的表现都优于它们,这通常被用于衡量该器件存储电荷的指标。当与一种采用二硒化锡制成的电极的超级电容器相比,新装置提供的电容是其900倍。
“将生物材料集成到储能设备中一直很棘手,因为很难控制它们所产生的电性能,然后严重影响设备的生命周期和性能。”梁宏说。“另外,生物材料的制作过程一般包括化学处理,这对人体有害。我们设计了一种环境友好的储能装置,它具有卓越的电气性能,并且可以轻松、安全地制造,成本也低得多。”
该研究发表在《储能》杂志上。
原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/36820.html