CHAPER7
访问传递参数
现在我们来看函数调用者通过栈把参数传递到被调用函数。被调用函数是如何访问这些参数呢?
#!cpp #include <stdio.h> int f (int a, int b, int c) { return a*b+c; }; int main() { printf ("%d ", f(1, 2, 3)); return 0; };
7.1 X86
7.1.1 MSVC
如下为相应的反汇编代码(MSVC 2010 Express)
Listing 7.2 MSVC 2010 Express
#!bash _TEXT SEGMENT _a$ = 8 ; size = 4 _b$ = 12 ; size = 4 _c$ = 16 ; size = 4 _f PROC push ebp mov ebp, esp mov eax, DWORD PTR _a$[ebp] imul eax, DWORD PTR _b$[ebp] add eax, DWORD PTR _c$[ebp] pop ebp ret 0 _f ENDP _main PROC push ebp mov ebp, esp push 3 ; 3rd argument push 2 ; 2nd argument push 1 ; 1st argument call _f add esp, 12 push eax push OFFSET $SG2463 ; ’%d’, 0aH, 00H call _printf add esp, 8 ; return 0 xor eax, eax pop ebp ret 0 _main ENDP
我们可以看到函数main()中3个数字被圧栈,然后函数f(int, int, int)被调用。函数f()内部访问参数时使用了像_ a$=8 的宏,同样,在函数内部访问局部变量也使用了类似的形式,不同的是访问参数时偏移值(为正值)。因此EBP寄存器的值加上宏_a$的值指向压栈参数。
_a$[ebp]的值被存储在寄存器eax中,IMUL指令执行后,eax的值为eax与_b$[ebp]的乘积,然后eax与_c$[ebp]的值相加并将和放入eax寄存器中,之后返回eax的值。返回值作为printf()的参数。
7.1.2 MSVC+OllyDbg
我们在OllyDbg中观察,跟踪到函数f()使用第一个参数的位置,可以看到寄存器EBP指向栈底,图中使用红色箭头标识。栈帧中第一个被保存的是EBP的值,第二个是返回地址(RA),第三个是参数1,接下来是参数2,以此类推。因此,当我们访问第一个参数时EBP应该加8(2个32-bit字节宽度)。
Figure 7.1: OllyDbg: 函数f()内部
7.1.3 GCC
使用GCC4.4.1编译后在IDA中查看
Listing 7.3: GCC 4.4.1
#!bash public f f proc near arg_0 = dword ptr 8 arg_4 = dword ptr 0Ch arg_8 = dword ptr 10h push ebp mov ebp, esp mov eax, [ebp+arg_0] ; 1st argument imul eax, [ebp+arg_4] ; 2nd argument add eax, [ebp+arg_8] ; 3rd argument pop ebp retn f endp public main main proc near var_10 = dword ptr -10h var_C = dword ptr -0Ch var_8 = dword ptr -8 push ebp mov ebp, esp and esp, 0FFFFFFF0h sub esp, 10h mov [esp+10h+var_8], 3 ; 3rd argument mov [esp+10h+var_C], 2 ; 2nd argument mov [esp+10h+var_10], 1 ; 1st argument call f mov edx, offset aD ; "%d " mov [esp+10h+var_C], eax mov [esp+10h+var_10], edx call _printf mov eax, 0 leave retn main endp
几乎相同的结果。
执行两个函数后栈指针ESP并没有显示恢复,因为倒数第二个指令LEAVE(B.6.2)会自动恢复栈指针。
7.2 X64
x86-64架构下有点不同,函数参数(4或6)使用寄存器传递,被调用函数通过访问寄存器来访问传递进来的参数。
7.2.1 MSVC
MSVC优化后:
Listing 7.4: MSVC 2012 /Ox x64
#!bash $SG2997 DB ’%d’, 0aH, 00H main PROC sub rsp, 40 mov edx, 2 lea r8d, QWORD PTR [rdx+1] ; R8D=3 lea ecx, QWORD PTR [rdx-1] ; ECX=1 call f lea rcx, OFFSET FLAT:$SG2997 ; ’%d’ mov edx, eax call printf xor eax, eax add rsp, 40 ret 0 main ENDP f PROC ; ECX - 1st argument ; EDX - 2nd argument ; R8D - 3rd argument imul ecx, edx lea eax, DWORD PTR [r8+rcx] ret 0 f ENDP
我们可以看到函数f()直接使用寄存器来操作参数,LEA指令用来做加法,编译器认为使用LEA比使用ADD指令要更快。在mian()中也使用了LEA指令,编译器认为使用LEA比使用MOV指令效率更高。
我们来看看MSVC没有优化的情况:
Listing 7.5: MSVC 2012 x64
#!bash f proc near ; shadow space: arg_0 = dword ptr 8 arg_8 = dword ptr 10h arg_10 = dword ptr 18h ; ECX - 1st argument ; EDX - 2nd argument ; R8D - 3rd argument mov [rsp+arg_10], r8d mov [rsp+arg_8], edx mov [rsp+arg_0], ecx mov eax, [rsp+arg_0] imul eax, [rsp+arg_8] add eax, [rsp+arg_10] retn f endp main proc near sub rsp, 28h mov r8d, 3 ; 3rd argument mov edx, 2 ; 2nd argument mov ecx, 1 ; 1st argument call f mov edx, eax lea rcx, $SG2931 ; "%d " call printf ; return 0 xor eax, eax add rsp, 28h retn main endp
这里从寄存器传递进来的3个参数因为某种情况又被保存到栈里。这就是所谓的“shadow space”2:每个Win64通常(不是必需)会保存所有4个寄存器的值。这样做由两个原因:1)为输入参数分配所有寄存器(即使是4个)太浪费,所以要通过堆栈来访问;2)每次中断下来调试器总是能够定位函数参数3。
调用者负责在栈中分配“shadow space”。
7.2.2 GCC
GCC优化后的代码:
Listing 7.6: GCC 4.4.6 -O3 x64
#!bash f: ; EDI - 1st argument ; ESI - 2nd argument ; EDX - 3rd argument imul esi, edi lea eax, [rdx+rsi] ret main: sub rsp, 8 mov edx, 3 mov esi, 2 mov edi, 1 call f mov edi, OFFSET FLAT:.LC0 ; "%d " mov esi, eax xor eax, eax ; number of vector registers passed call printf xor eax, eax add rsp, 8 ret
GCC无优化代码:
Listing 7.7: GCC 4.4.6 x64
#!bash f: ; EDI - 1st argument ; ESI - 2nd argument ; EDX - 3rd argument push rbp mov rbp, rsp mov DWORD PTR [rbp-4], edi mov DWORD PTR [rbp-8], esi mov DWORD PTR [rbp-12], edx mov eax, DWORD PTR [rbp-4] imul eax, DWORD PTR [rbp-8] add eax, DWORD PTR [rbp-12] leave ret main: push rbp mov rbp, rsp mov edx, 3 mov esi, 2 mov edi, 1 call f mov edx, eax mov eax, OFFSET FLAT:.LC0 ; "%d " mov esi, edx mov rdi, rax mov eax, 0 ; number of vector registers passed call printf mov eax, 0 leave ret
System V *NIX [21]没有“shadow space”,但被调用者可能会保存参数,这也是造成寄存器短缺的原因。
7.2.3 GCC: uint64_t instead int
我们例子使用的是32位int,寄存器也为32位寄存器(前缀为E-)。
为处理64位数值内部会自动调整为64位寄存器:
#!cpp #include <stdio.h> #include <stdint.h> uint64_t f (uint64_t a, uint64_t b, uint64_t c) { return a*b+c; }; int main() { printf ("%lld ", f(0x1122334455667788,0x1111111122222222,0x3333333344444444)); return 0; };
Listing 7.8: GCC 4.4.6 -O3 x64
#!cpp f proc near imul rsi, rdi lea rax, [rdx+rsi] retn f endp main proc near sub rsp, 8 mov rdx, 3333333344444444h ; 3rd argument mov rsi, 1111111122222222h ; 2nd argument mov rdi, 1122334455667788h ; 1st argument call f mov edi, offset format ; "%lld " mov rsi, rax xor eax, eax ; number of vector registers passed call _printf xor eax, eax add rsp, 8 retn main endp
代码非常相似,只是使用了64位寄存器(前缀为R)。
7.3 ARM
7.3.1 未优化的Keil + ARM mode
#!bash .text:000000A4 00 30 A0 E1 MOV R3, R0 .text:000000A8 93 21 20 E0 MLA R0, R3, R1, R2 .text:000000AC 1E FF 2F E1 BX LR ... .text:000000B0 main .text:000000B0 10 40 2D E9 STMFD SP!, {R4,LR} .text:000000B4 03 20 A0 E3 MOV R2, #3 .text:000000B8 02 10 A0 E3 MOV R1, #2 .text:000000BC 01 00 A0 E3 MOV R0, #1 .text:000000C0 F7 FF FF EB BL f .text:000000C4 00 40 A0 E1 MOV R4, R0 .text:000000C8 04 10 A0 E1 MOV R1, R4 .text:000000CC 5A 0F 8F E2 ADR R0, aD_0 ; "%d " .text:000000D0 E3 18 00 EB BL __2printf .text:000000D4 00 00 A0 E3 MOV R0, #0 .text:000000D8 10 80 BD E8 LDMFD SP!, {R4,PC}
main()函数里调用了另外两个函数,3个值被传递到f();
正如前面提到的,ARM通常使用前四个寄存器(R0-R4)传递前四个值。
f()函数使用了前三个寄存器(R0-R2)作为参数。
MLA (Multiply Accumulate)指令将R3寄存器和R1寄存器的值相乘,然后再将乘积与R2寄存器的值相加将结果存入R0,函数返回R0。
一条指令完成乘法和加法4,如果不包括SIMD新的FMA指令5,通常x86下没有这样的指令。
第一条指令MOV R3,R0,看起来冗余是因为该代码是非优化的。
BX指令返回到LR寄存器存储的地址,处理器根据状态模式从Thumb状态转换到ARM状态,或者反之。函数f()可以被ARM代码或者Thumb代码调用,如果是Thumb代码调用BX将返回到调用函数并切换到Thumb模式,或者反之。
7.3.2 Optimizing Keil + ARM mode
#!bash .text:00000098 f .text:00000098 91 20 20 E0 MLA R0, R1, R0, R2 .text:0000009C 1E FF 2F E1 BX LR
这里f()编译时使用完全优化模式(-O3),MOV指令被优化,现在MLA使用所有输入寄存器并将结果置入R0寄存器。
7.3.3 Optimizing Keil + thumb mode
#!bash .text:0000005E 48 43 MULS R0, R1 .text:00000060 80 18 ADDS R0, R0, R2 .text:00000062 70 47 BX LR
Thumb模式下没有MLA指令,编译器做了两次间接处理,MULS指令使R0寄存器的值与R1寄存器的值相乘并将结果存入R0。ADDS指令将R0与R2的值相加并将结果存入R0。
Chapter 8
一个或者多个字的返回值
X86架构下通常返回EAX寄存器的值,如果是单字节char,则只使用EAX的低8位AL。如果返回float类型则使用FPU寄存器ST(0)。ARM架构下通常返回寄存器R0。
假如main()函数的返回值是void而不是int会怎么样?
通常启动函数调用main()为:
#!bash push envp push argv push argc call main push eax call exit
换句话说为
#!cpp exit(main(argc,argv,envp));
如果main()声明为void类型并且函数没有明确返回状态值,通常在main()结束时EAX寄存器的值被返回,然后作为exit()的参数。大多数情况下函数返回的是随机值。这种情况下程序的退出代码为伪随机的。
我们看一个实例,注意main()是void类型:
#!cpp #include <stdio.h> void main() { printf ("Hello, world! "); };
我们在linux下编译。
GCC 4.8.1会使用puts()替代printf()(看前面章节2.3.3),没有关系,因为puts()会返回打印的字符数,就行printf()一样。请注意,main()结束时EAX寄存器的值是非0的,这意味着main()结束时保留puts()返回时EAX的值。
Listing 8.1: GCC 4.8.1
#!bash .LC0: .string "Hello, world!" main: push ebp mov ebp, esp and esp, -16 sub esp, 16 mov DWORD PTR [esp], OFFSET FLAT:.LC0 call puts leave ret
我们写bash脚本来看退出状态:
Listing 8.2: tst.sh
#!bash #!/bin/sh ./hello_world echo $?
运行:
#!bash $ tst.sh Hello, world! 14
14为打印的字符数。
回到返回值是EAX寄存器值的事实,这也就是为什么老的C编译器不能够创建返回信息无法拟合到一个寄存器(通常是int型)的函数。如果必须这样,应该通过指针来传递。现在可以这样,比如返回整个结构体,这种情况应该避免。如果必须要返回大的结构体,调用者必须开辟存储空间,并通过第一个参数传递指针,整个过程对程序是透明的。像手动通过第一个参数传递指针一样,只是编译器隐藏了这个过程。
小例子:
#!cpp struct s { int a; int b; int c; }; struct s get_some_values (int a) { struct s rt; rt.a=a+1; rt.b=a+2; rt.c=a+3; return rt; };
…我们可以得到(MSVC 2010 /Ox):
#!bash $T3853 = 8 ; size = 4 _a$ = 12 ; size = 4 ?get_some_values@@YA?AUs@@H@Z PROC ; get_some_values mov ecx, DWORD PTR _a$[esp-4] mov eax, DWORD PTR $T3853[esp-4] lea edx, DWORD PTR [ecx+1] mov DWORD PTR [eax], edx lea edx, DWORD PTR [ecx+2] add ecx, 3 mov DWORD PTR [eax+4], edx mov DWORD PTR [eax+8], ecx ret 0 ?get_some_values@@YA?AUs@@H@Z ENDP ; get_some_values
内部变量传递指针到结构体的宏为$T3853。
这个例子可以用C99语言扩展来重写:
#!bash struct s { int a; int b; int c; }; struct s get_some_values (int a) { return (struct s){.a=a+1, .b=a+2, .c=a+3}; };
Listing 8.3: GCC 4.8.1
#!bash _get_some_values proc near ptr_to_struct = dword ptr 4 a = dword ptr 8 mov edx, [esp+a] mov eax, [esp+ptr_to_struct] lea ecx, [edx+1] mov [eax], ecx lea ecx, [edx+2] add edx, 3 mov [eax+4], ecx mov [eax+8], edx retn _get_some_values endp
我们可以看到,函数仅仅填充调用者申请的结构体空间的相应字段。因此没有性能缺陷。
Chapter 9
指针
指针通常被用作函数返回值(recall scanf() case (6)).例如,当函数返回两个值时。
9.1 Global variables example
#!bash #include <stdio.h> void f1 (int x, int y, int *sum, int *product) { *sum=x+y; *product=x*y; }; int sum, product; void main() { f1(123, 456, &sum, &product); printf ("sum=%d, product=%d ", sum, product); };
编译后
Listing 9.1: Optimizing MSVC 2010 (/Ox /Ob0)
#!bash COMM _product:DWORD COMM _sum:DWORD $SG2803 DB ’sum=%d, product=%d’, 0aH, 00H _x$ = 8 ; size = 4 _y$ = 12 ; size = 4 _sum$ = 16 ; size = 4 _product$ = 20 ; size = 4 _f1 PROC mov ecx, DWORD PTR _y$[esp-4] mov eax, DWORD PTR _x$[esp-4] lea edx, DWORD PTR [eax+ecx] imul eax, ecx mov ecx, DWORD PTR _product$[esp-4] push esi mov esi, DWORD PTR _sum$[esp] mov DWORD PTR [esi], edx mov DWORD PTR [ecx], eax pop esi ret 0 _f1 ENDP _main PROC push OFFSET _product push OFFSET _sum push 456 ; 000001c8H push 123 ; 0000007bH call _f1 mov eax, DWORD PTR _product mov ecx, DWORD PTR _sum push eax push ecx push OFFSET $SG2803 call DWORD PTR __imp__printf add esp, 28 ; 0000001cH xor eax, eax ret 0 _main ENDP
让我们在OD中查看:图9.1。首先全局变量地址被传递进f1()。我们在堆栈元素点击“数据窗口跟随”,可以看到数据段上分配两个变量的空间。这些变量被置0,因为未初始化数据(BSS1)在程序运行之前被清理为0。这些变量属于数据段,我们按Alt+M可以查看内存映射fig. 9.5.
让我们跟踪(F7)到f1()fig. 9.2.在堆栈中为456 (0x1C8) 和 123 (0x7B),接着是两个全局变量的地址。
让我们跟踪到f1()结尾,可以看到两个全局变量存放了计算结果。
现在两个全局变量的值被加载到寄存器传递给printf(): fig. 9.4.
Figure 9.1: OllyDbg: 全局变量地址被传递进f1()
Figure 9.2: OllyDbg: f1()开始
Figure 9.3: OllyDbg: f1()完成
Figure 9.4: OllyDbg: 全局变量被传递进printf()
Figure 9.5: OllyDbg: memory map
9.2 Local variables example
让我们修改一下例子:
Listing 9.2: 局部变量
#!bash void main() { int sum, product; // now variables are here f1(123, 456, &sum, &product); printf ("sum=%d, product=%d ", sum, product); };
f1()函数代码没有改变。仅仅main()代码作了修改。
Listing 9.3: Optimizing MSVC 2010 (/Ox /Ob0)
#!bash _product$ = -8 ; size = 4 _sum$ = -4 ; size = 4 _main PROC ; Line 10 sub esp, 8 ; Line 13 lea eax, DWORD PTR _product$[esp+8] push eax lea ecx, DWORD PTR _sum$[esp+12] push ecx push 456 ; 000001c8H push 123 ; 0000007bH call _f1 ; Line 14 mov edx, DWORD PTR _product$[esp+24] mov eax, DWORD PTR _sum$[esp+24] push edx push eax push OFFSET $SG2803 call DWORD PTR __imp__printf ; Line 15 xor eax, eax add esp, 36 ; 00000024H ret 0
我们在OD中查看,局部变量地址在堆栈中是0x35FCF4和0x35FCF8。我们可以看到是如何圧栈的fig. 9.6.
f1()开始的时候,随机栈地址为0x35FCF4和0x35FCF8 fig. 9.7.
f1()完成时结果0xDB18和0x243存放在地址0x35FCF4和0x35FCF8。
Figure 9.6: OllyDbg: 局部变量地址被圧栈
Figure 9.7: OllyDbg: f1()starting
Figure 9.8: OllyDbg: f1()finished
9.3 小结
f1()可以返回结果到内存的任何地方,这是指针的本质和特性。顺便提一下,C++引用的工作方式和这个类似。详情阅读相关内容(33)。
Chapter 10
条件跳转
现在我们来了解条件跳转。
#!cpp #include <stdio.h> void f_signed (int a, int b) { if (a>b) printf ("a>b "); if (a==b) printf ("a==b "); if (a<b) printf ("a<b "); }; void f_unsigned (unsigned int a, unsigned int b) { if (a>b) printf ("a>b "); if (a==b) printf ("a==b "); if (a<b) printf ("a<b "); }; int main() { f_signed(1, 2); f_unsigned(1, 2); return 0; };
10.1 x86
10.1.1 x86 + MSVC
f_signed() 函数:
Listing 10.1: 非优化MSVC 2010
#!bash _a$ = 8 _b$ = 12 _f_signed PROC push ebp mov ebp, esp mov eax, DWORD PTR _a$[ebp] cmp eax, DWORD PTR _b$[ebp] jle SHORT $LN3@f_signed push OFFSET $SG737 ; ’a>b’ call _printf add esp, 4 $LN3@f_signed: mov ecx, DWORD PTR _a$[ebp] cmp ecx, DWORD PTR _b$[ebp] jne SHORT $LN2@f_signed push OFFSET $SG739 ; ’a==b’ call _printf add esp, 4 $LN2@f_signed: mov edx, DWORD PTR _a$[ebp] cmp edx, DWORD PTR _b$[ebp] jge SHORT $LN4@f_signed push OFFSET $SG741 ; ’a<b’ call _printf add esp, 4 $LN4@f_signed: pop ebp ret 0 _f_signed ENDP
第一个指令JLE意味如果小于等于则跳转。换句话说,第二个操作数大于或者等于第一个操作数,控制流将传递到指定地址或者标签。否则(第二个操作数小于第一个操作数)第一个printf()将被调用。第二个检测JNE:如果不相等则跳转。如果两个操作数相等控制流则不变。第三个检测JGE:大于等于跳转,当第一个操作数大于或者等于第二个操作数时跳转。如果三种情况都没有发生则无printf()被调用,事实上,如果没有特殊干预,这种情况几乎不会发生。
f_unsigned()函数类似,只是JBE和JAE替代了JLE和JGE,我们来看f_unsigned()函数
Listing 10.2: GCC
#!bash _a$ = 8 ; size = 4 _b$ = 12 ; size = 4 _f_unsigned PROC push ebp mov ebp, esp mov eax, DWORD PTR _a$[ebp] cmp eax, DWORD PTR _b$[ebp] jbe SHORT $LN3@f_unsigned push OFFSET $SG2761 ; ’a>b’ call _printf add esp, 4 $LN3@f_unsigned: mov ecx, DWORD PTR _a$[ebp] cmp ecx, DWORD PTR _b$[ebp] jne SHORT $LN2@f_unsigned push OFFSET $SG2763 ; ’a==b’ call _printf add esp, 4 $LN2@f_unsigned: mov edx, DWORD PTR _a$[ebp] cmp edx, DWORD PTR _b$[ebp] jae SHORT $LN4@f_unsigned push OFFSET $SG2765 ; ’a<b’ call _printf add esp, 4 $LN4@f_unsigned: pop ebp ret 0 _f_unsigned ENDP
几乎是相同的,不同的是:JBE-小于等于跳转和JAE-大于等于跳转。这些指令(JA/JAE/JBE/JBE)不同于JG/JGE/JL/JLE,它们使用无符号值。
我们也可以看到有符号值的表示(35)。因此我们看JG/JL代替JA/JBE的用法或者相反,我们几乎可以确定变量的有符号或者无符号类型。
main()函数没有什么新的内容:
Listing 10.3: main()
#!bash _main PROC push ebp mov ebp, esp push 2 push 1 call _f_signed add esp, 8 push 2 push 1 call _f_unsigned add esp, 8 xor eax, eax pop ebp ret 0 _main ENDP
10.1.2 x86 + MSVC + OllyDbg
我们在OD里允许例子来查看标志寄存器。我们从f_unsigned()函数开始。CMP执行了三次,每次的参数都相同,所以标志位也相同。
第一次比较的结果:fig. 10.1.标志位:C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.标志位名称为OD对其的简称。
当CF=1 or ZF=1时JBE将被触发,此时将跳转。
接下来的条件跳转:fig. 10.2.当ZF=0(zero flag)时JNZ则被触发
第三个条件跳转:fig. 10.3.我们可以发现14当CF=0 (carry flag)时,JNB将被触发。在该例中条件不为真,所以第三个printf()将被执行。
Figure 10.1: OllyDbg: f_unsigned(): 第一个条件跳转
Figure 10.2: OllyDbg: f_unsigned(): 第二个条件跳转
Figure 10.3: OllyDbg: f_unsigned(): 第三个条件跳转
现在我们在OD中看f_signed()函数使用有符号值。
可以看到标志寄存器:C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.
第一种条件跳转JLE将被触发fig. 10.4.我们可以发现14,当ZF=1 or SF≠OF。该例中SF≠OF,所以跳转将被触发。
下一个条件跳转将被触发:如果ZF=0 (zero flag): fig. 10.5.
第三个条件跳转将不会被触发,因为仅有SF=OF,该例中不为真: fig. 10.6.
Figure 10.4: OllyDbg: f_signed(): 第一个条件跳转
Figure 10.5: OllyDbg: f_signed(): 第二个条件跳转
Figure 10.6: OllyDbg: f_signed(): 第三个条件跳转
10.1.3 x86 + MSVC + Hiew
我们可以修改这个可执行文件,使其无论输入的什么值f_unsigned()函数都会打印“a==b”。
在Hiew中查看:fig. 10.7.
我们要完成以下3个任务:
1. 使第一个跳转一直被触发; 2. 使第二个跳转从不被触发; 3. 使第三个跳转一直被触发。
我们需要使代码流进入第二个printf(),这样才一直打印“a==b”。
三个指令(或字节)应该被修改:
1. 第一个跳转修改为JMP,但跳转偏移值不变。 2. 第二个跳转有时可能被触发,我们修改跳转偏移值为0后,无论何种情况,程序总是跳向下一条指令。跳转地址等于跳转偏移值加上下一条指令地址,当跳转偏移值为0时,跳转地址就为下一条指令地址,所以无论如何下一条指令总被执行。 3. 第三个跳转我们也修改为JMP,这样跳转总被触发。
修改后:fig. 10.8.
如果忘了这些跳转,printf()可能会被多次调用,这种行为可能是我们不需要的。
Figure 10.7: Hiew: f_unsigned() 函数
Figure 10.8: Hiew:我们修改 f_unsigned() 函数
10.1.4 Non-optimizing GCC
GCC 4.4.1非优化状态产生的代码几乎一样,只是用puts() (2.3.3) 替代 printf()。
10.1.5 Optimizing GCC
细心的读者可能会问,为什么要多次执行CMP,如果标志寄存器每次都相同呢?可能MSVC不会做这样的优化,但是GCC 4.8.1可以做这样的深度优化:
Listing 10.4: GCC 4.8.1 f_signed()
#!bash f_signed: mov eax, DWORD PTR [esp+8] cmp DWORD PTR [esp+4], eax jg .L6 je .L7 jge .L1 mov DWORD PTR [esp+4], OFFSET FLAT:.LC2 ; "a<b" jmp puts .L6: mov DWORD PTR [esp+4], OFFSET FLAT:.LC0 ; "a>b" jmp puts .L1: rep ret .L7: mov DWORD PTR [esp+4], OFFSET FLAT:.LC1 ; "a==b" jmp puts
我们可以看到JMP puts替代了CALL puts/RETN。稍后我们介绍这种情况11.1.1.。
不用说,这种类型的x86代码是很少见的。MSVC2012似乎不会这样做。其他情况下,汇编程序能意识到此类使用。如果你在其它地方看到此类代码,更可能是手工构造的。
f_unsigned()函数代码:
Listing 10.5: GCC 4.8.1 f_unsigned()
#!bash f_unsigned: push esi push ebx sub esp, 20 mov esi, DWORD PTR [esp+32] mov ebx, DWORD PTR [esp+36] cmp esi, ebx ja .L13 cmp esi, ebx ; instruction may be removed je .L14 .L10: jb .L15 add esp, 20 pop ebx pop esi ret .L15: mov DWORD PTR [esp+32], OFFSET FLAT:.LC2 ; "a<b" add esp, 20 pop ebx pop esi jmp puts .L13: mov DWORD PTR [esp], OFFSET FLAT:.LC0 ; "a>b" call puts cmp esi, ebx jne .L10 .L14: mov DWORD PTR [esp+32], OFFSET FLAT:.LC1 ; "a==b" add esp, 20 pop ebx pop esi jmp puts
因此,GCC 4.8.1的优化算法并不总是完美的。
10.2 ARM
10.2.1 Keil + ARM mode优化后
Listing 10.6: Optimizing Keil + ARM mode
#!bash .text:000000B8 EXPORT f_signed .text:000000B8 f_signed ; CODE XREF: main+C .text:000000B8 70 40 2D E9 STMFD SP!, {R4-R6,LR} .text:000000BC 01 40 A0 E1 MOV R4, R1 .text:000000C0 04 00 50 E1 CMP R0, R4 .text:000000C4 00 50 A0 E1 MOV R5, R0 .text:000000C8 1A 0E 8F C2 ADRGT R0, aAB ; "a>b " .text:000000CC A1 18 00 CB BLGT __2printf .text:000000D0 04 00 55 E1 CMP R5, R4 .text:000000D4 67 0F 8F 02 ADREQ R0, aAB_0 ; "a==b " .text:000000D8 9E 18 00 0B BLEQ __2printf .text:000000DC 04 00 55 E1 CMP R5, R4 .text:000000E0 70 80 BD A8 LDMGEFD SP!, {R4-R6,PC} .text:000000E4 70 40 BD E8 LDMFD SP!, {R4-R6,LR} .text:000000E8 19 0E 8F E2 ADR R0, aAB_1 ; "a<b " .text:000000EC 99 18 00 EA B __2printf .text:000000EC ; End of function f_signed
ARM下很多指令只有某些标志位被设置时才会被执行。比如做数值比较时。
举个例子,ADD实施上是ADDAL,这里的AL是Always,即总被执行。判定谓词是32位ARM指令的高4位(条件域)。无条件跳转的B指令其实是有条件的,就行其它任何条件跳转一样,只是条件域为AL,这意味着总是被执行,忽略标志位。
ADRGT指令就像和ADR一样,只是该指令前面为CMP指令,并且只有前面数值大于另一个数值时(Greater Than)时才被执行。
接下来的BLGT行为和BL一样,只有比较结果符合条件才能出发(Greater Than)。ADRGT把字符串“a>b ”的地址写入R0,然后BLGT调用printf()。因此,这些指令都带有GT后缀,只有当R0(a值)大于R4(b值)时指令才会被执行。
然后我们看ADREQ和BLEQ,这些指令动作和ADR及BL一样,只有当两个操作数对比后相等时才会被执行。这些指令前面是CMP(因为printf()调用可能会修改状态标识)。 然后我们看LDMGEFD,该指令行为和LDMFD指令一样1,仅仅当第一个值大于等于另一个值时(Greater Than),指令才会被执行。
“LDMGEFD SP!, {R4-R6,PC}”恢复寄存器并返回,只是当a>=b时才被触发,这样之后函数才执行完成。但是如果a<b,触发条件不成立是将执行下一条指令LDMFD SP!, {R4-R6,LR},该指令保存R4-R6寄存器,使用LR而不是PC,函数并不返回。最后两条指令是执行printf()(5.3.2)。
f_unsigned与此一样只是使用对应的指令为ADRHI, BLHI及LDMCSFD,判断谓词(HI = Unsigned higher, CS = Carry Set (greater than or equal))请类比之前的说明,另外就是函数内部使用无符号数值。
我们来看一下main()函数:
Listing 10.7: main()
#!bash .text:00000128 EXPORT main .text:00000128 main .text:00000128 10 40 2D E9 STMFD SP!, {R4,LR} .text:0000012C 02 10 A0 E3 MOV R1, #2 .text:00000130 01 00 A0 E3 MOV R0, #1 .text:00000134 DF FF FF EB BL f_signed .text:00000138 02 10 A0 E3 MOV R1, #2 .text:0000013C 01 00 A0 E3 MOV R0, #1 .text:00000140 EA FF FF EB BL f_unsigned .text:00000144 00 00 A0 E3 MOV R0, #0 .text:00000148 10 80 BD E8 LDMFD SP!, {R4,PC} .text:00000148 ; End of function main
这就是ARM模式如何避免使用条件跳转。
这样做有什么好处呢?因为ARM使用精简指令集(RISC)。简言之,处理器流水线技术受到跳转的影响,这也是分支预测重要的原因。程序使用的条件或者无条件跳转越少越好,使用断言指令可以减少条件跳转的使用次数。
x86没有这也的功能,通过使用CMP设置相应的标志位来触发指令。
10.2.2 Optimizing Keil + thumb mode
Listing 10.8: Optimizing Keil + thumb mode
#!bash .text:00000072 f_signed ; CODE XREF: main+6 .text:00000072 70 B5 PUSH {R4-R6,LR} .text:00000074 0C 00 MOVS R4, R1 .text:00000076 05 00 MOVS R5, R0 .text:00000078 A0 42 CMP R0, R4 .text:0000007A 02 DD BLE loc_82 .text:0000007C A4 A0 ADR R0, aAB ; "a>b " .text:0000007E 06 F0 B7 F8 BL __2printf .text:00000082 .text:00000082 loc_82 ; CODE XREF: f_signed+8 .text:00000082 A5 42 CMP R5, R4 .text:00000084 02 D1 BNE loc_8C .text:00000086 A4 A0 ADR R0, aAB_0 ; "a==b " .text:00000088 06 F0 B2 F8 BL __2printf .text:0000008C .text:0000008C loc_8C ; CODE XREF: f_signed+12 .text:0000008C A5 42 CMP R5, R4 .text:0000008E 02 DA BGE locret_96 .text:00000090 A3 A0 ADR R0, aAB_1 ; "a<b " .text:00000092 06 F0 AD F8 BL __2printf .text:00000096 .text:00000096 locret_96 ; CODE XREF: f_signed+1C .text:00000096 70 BD POP {R4-R6,PC} .text:00000096 ; End of function f_signed
仅仅Thumb模式下的B指令可能需要条件代码辅助,所以thumb代码看起来更普通一些。
BLE通常是条件跳转小于或等于(Less than or Equal),BNE—不等于(Not Equal),BGE—大于或等于(Greater than or Equal)。
f_unsigned函数是同样的,只是使用的指令用来处理无符号数值:BLS (Unsigned lower or same) 和BCS (Carry Set (Greater than or equal)).
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/56169.html