谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

田渊栋,卡耐基梅隆大学机器人系博士学位、上海交通大学硕士学位和学士学位,前谷歌无人车项目组成员,现任 Facebook 人工智能组研究员,主要负责 Facebook 的智能围棋项目 Dark Forest。

谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

贾扬清,拥有加州大学伯克利分校计算机科学博士学位、清华大学硕士学位和学士学位,曾于新加坡国立大学、微软亚洲研究院、NEC美国实验室、Google Brain工作,现任 Facebook 研究科学家,主要负责前沿AI 平台的开发以及前沿的深度学习研究。

近日,谷歌的 AI 部门 DeepMind 开发了一种叫做可微分神经计算机(DNC)的神经网络模型,相关论文发表于 10 月 12 日在线出版的《自然》杂志上,题为《 利用神经网络与外部动态存储器进行混合计算》。这种新模型将神经网络与可读写的外部存储器结合,既能像神经网络那样通过试错和样本训练进行深度学习,又能像传统计算机一样处理数据。即使没有先验知识,DNC 也可以解决规划最佳路线、拼图任务等小规模问题。

德国研究者 Herbert Jaeger 评论称,这是目前最接近数字计算机的神经计算系统,该成果有望解决神经系统符号处理难题。

斯坦福大学心智、大脑和计算中心主任 Jay McClelland 称,这项研究将成为人工智能领域“有趣且重要的里程碑”。

那么我们究竟该如何看待谷歌 Deepmind 团队最新发布的可微分神经计算机 DNC 呢?果然,已经有人在知乎上提出这个问题。

编者注:该知乎提问中“谷歌deeplearning团队”实际上应该指的是“谷歌Deepmind团队”。

谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

截止发稿前,该问题有两个回答,Facebook 人工智能组研究员田渊栋的回答获得了 44 人赞同。

他认为“革命性突破”言过其实,总的来说不及前两篇 Nature。

这篇文章模型复杂,手工设计太多,实验相对简单,没有在大规模数据集上测试性能,能成功地应用于小规模搜索,但通用化还需要很久。

谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

田渊栋在知乎上的回答,贾扬清进行了回复(链接

贾扬清认为以前主要是手调 feature(特征),而这次的 DNC 实际上是手调网络,他在评论中提到的 Jitendra 应该是加州大学伯克利分校的电气工程与计算机科学系教授 Jitendra Malik

在田渊栋的英文博客上,可以看到更多他对这篇论文的看法,我们首先来看看这篇题为《 Notes on DeepMind's 3rd Nature paper 》的文章。

以下为博文内容:

最近 Deepmind 发表了他们在《自然》杂志上的第三篇论文《 利用神经网络与外部动态存储器进行混合计算》。他们设计了一个递归神经网络结构(深度 LSTM),反复发送新的读/写命令到外部存储器,以及基于先前读取存储器和当前输入得到的动作输出。他们称它为 DNC(可微分神经计算机)。这里希望网络能够基于给定的信息进行推理。他们用实验模型来处理 bAbI 推理任务,网络遍历/最短路径预测,家庭树的关系推理和拼图游戏推理,其性能远远优于没有外部存储器的 LSTM。

这里给出一些评价:

1、总体而言,他们是隐含地学到了基于搜索推理的启发式函数(heuristic function)。正如他们在文章中提到的:“一个基于最短路径训练的 DNC 的可视化结果显示,它会逐步探索从开始到结束的每个节点辐射出的关系,直到找到整个连接路径(补充视频 1)。”我们也可以在伦敦地铁任务(图3)中看到类似的情况。这在小规模搜索的实验中可能是有效的,但在处理真正的问题时不一定是一个很好的策略。

2、似乎网络中的手工调整设计很多。该网络是给外部存储器的下一组操作。外部存储器上有许多类型的操作,组合了各种不同类型的 Attention 机制(基于内容的 Attention 模型,随之而来的写入 Attention 模型,和基于读写的“用法”机制)。不确定哪个组件更重要。理想情况下,应该有一个更自动或更规律的方法。

3、几个有趣的细节:

(1)直接用实际情况的答案训练一个连续结构预测模型,这不是很好,因为当预测偏离了实际观测情况,该模型可能会很容易失败。在本文中,他们在结构预测时使用了混合了实际观测情况分布与当前预测分布 DAgger。这使得预测的鲁棒性很好。

(2)对于拼图游戏来说,他们使用了 actor-critic-like 模型。在这种情况下,DNC 的输出策略和价值功能取决于一开始作为输入的游戏规则。这符合我们训练 Doom AI 的经验,actor-critic-like 模型的收敛速度比Q-learning 快。

(3)课程训练(例如,先从简单的任务开始训练模式)起着重要的作用。这也符合我们训练 Doom AI 的经验(我们很快将发表相关论文)。

雷锋网原创文章,未经授权禁止转载。详情见转载须知


谷歌 DeepMind 的可微分神经计算机 DNC 怎么样?看 Facebook AI 研究员田渊栋、贾扬清怎么说

原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/61537.html

(0)
上一篇 2021年8月10日 19:14
下一篇 2021年8月10日 19:14

相关推荐

发表回复

登录后才能评论