前言
熟悉 Java 并发编程的都知道,JMM(Java 内存模型) 中的 happen-before(简称 hb)规则,该规则定义了 Java 多线程操作的有序性和可见性,防止了编译器重排序对程序结果的影响。按照官方的说法:
当一个变量被多个线程读取并且至少被一个线程写入时,如果读操作和写操作没有 HB 关系,则会产生数据竞争问题。 要想保证操作 B
的线程看到操作 A
的结果(无论 A
和 B
是否在一个线程),那么在 A
和 B
之间必须满足 HB 原则,如果没有,将有可能导致重排序。 当缺少 HB 关系时,就可能出现重排序问题。
HB 有哪些规则?
这个大家都非常熟悉了应该,大部分书籍和文章都会介绍,这里稍微回顾一下:
其中,传递规则我加粗了,这个规则至关重要。如何熟练的使用传递规则是实现同步的关键。
然后,再换个角度解释 HB:当一个操作 A HB 操作 B,那么,操作 A 对共享变量的操作结果对操作 B 都是可见的。
同时,如果 操作 B HB 操作 C,那么,操作 A 对共享变量的操作结果对操作 B 都是可见的。
而实现可见性的原理则是 cache protocol 和 memory barrier。通过缓存一致性协议和内存屏障实现可见性。
如何实现同步?
在 Doug Lea 著作 《Java Concurrency in Practice》中,有下面的描述:
书中提到:通过组合 hb 的一些规则,可以实现对某个未被锁保护变量的可见性。
但由于这个技术对语句的顺序很敏感,因此容易出错。
楼主接下来,将演示如何通过 volatile 规则和程序次序规则实现对一个变量同步。
来一个熟悉的例子:
class ThreadPrintDemo{
static int num = 0;
static volatile boolean flag = false;
public static void main(String[] args){
Thread t1 = new Thread(() -> {
for (; 100 > num; ) {
if (!flag && (num == 0 || ++num % 2 == 0)) {
System.out.println(num);
flag = true;
}
}
}
);
Thread t2 = new Thread(() -> {
for (; 100 > num; ) {
if (flag && (++num % 2 != 0)) {
System.out.println(num);
flag = false;
}
}
}
);
t1.start();
t2.start();
}
}
这段代码的作用是两个线程间隔打印出 0 – 100 的数字。
熟悉并发编程的同学肯定要说了,这个 num 变量没有使用 volatile,会有可见性问题,即:t1 线程更新了 num,t2 线程无法感知。
哈哈,楼主刚开始也是这么认为的,但最近通过研究 HB 规则,我发现,去掉 num 的 volatile 修饰也是可以的。
我们分析一下,楼主画了一个图:
我们分析这个图:
注意:HB 规则保证上一个操作的结果对下一个操作都是可见的。
所以,上面的小程序中,线程 A 对 num 的修改,线程 B 是完全感知的 —— 即使 num 没有使用 volatile 修饰。
这样,我们就借助 HB 原则实现了对一个变量的同步操作,也就是在多线程环境中,保证了并发修改共享变量的安全性。并且没有对这个变量使用 Java 的原语:volatile 和 synchronized 和 CAS(假设算的话)。
这可能看起来不安全(实际上安全),也好像不太容易理解。因为这一切都是 HB 底层的 cache protocol 和 memory barrier 实现的。
其他规则实现同步
static int a = 1;
public static void main(String[] args){
Thread tb = new Thread(() -> {
a = 2;
});
Thread ta = new Thread(() -> {
try {
tb.join();
} catch (InterruptedException e) {
//NO
}
System.out.println(a);
});
ta.start();
tb.start();
}
- 利用线程 start 规则实现:
static int a = 1;
public static void main(String[] args){
Thread tb = new Thread(() -> {
System.out.println(a);
});
Thread ta = new Thread(() -> {
tb.start();
a = 2;
});
ta.start();
}
这两个操作,也可以保证变量 a 的可见性。
确实有点颠覆之前的观念。之前的观念中,如果一个变量没有被 volatile 修饰或 final 修饰,那么他在多线程下的读写肯定是不安全的 —— 因为会有缓存,导致读取到的不是最新的。
然而,通过借助 HB,我们可以实现。
总结
虽然本文标题是通过 happen-before 实现对共享变量的同步操作,但主要目的还是更深刻的理解 happen-before,理解他的 happen-before 概念其实就是保证多线程环境中,上一个操作对下一个操作的有序性和操作结果的可见性。
同时,通过灵活的使用传递性规则,再对规则进行组合,就可以将两个线程进行同步 —— 实现指定的共享变量不使用原语也可以保证可见性。虽然这好像不是很易读,但也是一种尝试。
关于如何组合使用规则实现同步,Doug Lea 在 JUC 中给出了实践。
例如老版本的 FutureTask 的内部类 Sync(已消失),通过 tryReleaseShared 方法修改 volatile 变量,tryAcquireShared 读取 volatile 变量,这是利用了 volatile 规则;
通过在 tryReleaseShared 之前设置非 volatile 的 result 变量,然后在 tryAcquireShared 之后读取 result 变量,这是利用了程序次序规则。
从而保证 result 变量的可见性。和我们的第一个例子类似:利用程序次序规则和 volatile 规则实现普通变量可见性。
而 Doug Lea 自己也说了,这个“借助”技术非常容易出错,要谨慎使用。但在某些情况下,这种“借助”是非常合理的。
实际上,BlockingQueue 也是“借助”了 happen-before 的规则。还记得 unlock 规则吗?当 unlock 发生后,内部元素一定是可见的。
而类库中还有其他的操作也“借助”了 happen-before 原则:并发容器,CountDownLatch,Semaphore,Future,Executor,CyclicBarrier,Exchanger 等。
总而言之,言而总之:
happen-before 原则是 JMM 的核心所在,只有满足了 hb 原则才能保证有序性和可见性,否则编译器将会对代码重排序。hb 甚至将 lock 和 volatile 也定义了规则。
通过适当的对 hb 规则的组合,可以实现对普通共享变量的正确使用。
最后,如果不对,还请指正,万分感谢!
作者:莫那-鲁道 thinkinjava.cn
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/66214.html