一、缺失值产生的原因
缺失值的产生的原因多种多样,主要分为机械原因和人为原因。机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间数据未能收集(对于定时数据采集而言)。人为原因是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失,比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。
二、缺失值的类型
缺失值从缺失的分布来讲可以分为完全随机缺失,随机缺失和完全非随机缺失。完全随机缺失(missing completely at random,MCAR)指的是数据的缺失是随机的,数据的缺失不依赖于任何不完全变量或完全变量。随机缺失(missing at random,MAR)指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。完全非随机缺失(missing not at random,MNAR)指的是数据的缺失依赖于不完全变量自身。
从缺失值的所属属性上讲,如果所有的缺失值都是同一属性,那么这种缺失成为单值缺失,如果缺失值属于不同的属性,称为任意缺失。另外对于时间序列类的数据,可能存在随着时间的缺失,这种缺失称为单调缺失。
三、缺失值的处理方法
处理缺失值主要有以下几种方法:
1.当某个变量或者某个样本中缺失值占比过大时,那么我们可以认为这一变量或者样本没有意义,可以直接删除。
2. 用平均值、中值、分位数、众数、随机值等替代。效果一般,因为等于人为增加了噪声。
3.用其他变量做预测模型来算出缺失变量。效果比方法2略好。有一个根本缺陷,如果其他变量和缺失变量无关,则预测的结果无意义。如果预测结果相当准确,则又说明这个变量是没必要加入建模的。一般情况下,介于两者之间。
4.把变量映射到高维空间。比如性别,有男、女、缺失三种情况,则映射成3个变量:是否男、是否女、是否缺失。连续型变量也可以这样处理。比如Google、百度的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。这样做的好处是完整保留了原始数据的全部信息、不用考虑缺失值、不用考虑线性不可分之类的问题。缺点是计算量大大提升。
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/7199.html