概述
GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
数据准备
数据格式
2015-03,2015-03-10,cookie1 2015-03,2015-03-10,cookie5 2015-03,2015-03-12,cookie7 2015-04,2015-04-12,cookie3 2015-04,2015-04-13,cookie2 2015-04,2015-04-13,cookie4 2015-04,2015-04-16,cookie4 2015-03,2015-03-10,cookie2 2015-03,2015-03-10,cookie3 2015-04,2015-04-12,cookie5 2015-04,2015-04-13,cookie6 2015-04,2015-04-15,cookie3 2015-04,2015-04-15,cookie2 2015-04,2015-04-16,cookie1
创建表
use cookie; drop table if exists cookie5; create table cookie5(month string, day string, cookieid string) row format delimited fields terminated by ','; load data local inpath "/home/hadoop/cookie5.txt" into table cookie5; select * from cookie5;
玩一玩GROUPING SETS和GROUPING__ID
说明
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
GROUPING__ID,表示结果属于哪一个分组集合。
查询语句
select month, day, count(distinct cookieid) as uv, GROUPING__ID from cookie.cookie5 group by month,day grouping sets (month,day) order by GROUPING__ID;
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
查询结果
结果说明
第一列是按照month进行分组
第二列是按照day进行分组
第三列是按照month或day分组是,统计这一组有几个不同的cookieid
第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day
再比如
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM cookie5 GROUP BY month,day GROUPING SETS (month,day,(month,day)) ORDER BY GROUPING__ID;
等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day
玩一玩CUBE
说明
根据GROUP BY的维度的所有组合进行聚合
查询语句
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM cookie5 GROUP BY month,day WITH CUBE ORDER BY GROUPING__ID;
等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5 UNION ALL SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day
查询结果
玩一玩ROLLUP
说明
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合
查询语句
— 比如,以month维度进行层级聚合
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM cookie5 GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;
可以实现这样的上钻过程:
月天的UV->月的UV->总UV
–把month和day调换顺序,则以day维度进行层级聚合:
可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)
原创文章,作者:ItWorker,如若转载,请注明出处:https://blog.ytso.com/8988.html