Hive四Hive基本查询详解大数据

Hive查询

基本查询

全表和特定字段查询

  • 全表查询

sal select * from emp;

  • 选择特定列查询

sql select empno, ename from emp;

  • 注意
    1. SQL 语言大小写不敏感
    2. SQL 可以写在一行或者多行
    3. 关键字不能被缩写也不能分行
    4. 各子句一般要分行写
    5. 使用缩进提高语句的可读性

列别名

  1. 重命名一个列

  2. 便于计算

  3. 紧跟列名,也可以在列名和别名之间加入关键字‘AS’

  4. 案例

    select ename AS name, deptno dn from emp;

算术运算符

Hive四Hive基本查询详解大数据

  • 案例实操

sql select sal +1 from emp;

常用函数

  • 求总行数

sql select count(*) cnt from emp;

  • 求工资的最大值(max)
    sql select max(sal) max_sal from emp;

  • 求工资的最小值(min)
    sql select min(sal) min_sal from emp;

  • 求工资的总和(sum)

sql select sum(sal) sum_sal from emp;

  • 求工资的平均值(avg)

sql select avg(sal) avg_sal from emp;

Limit语句

select * from emp limit 5;

Hive之where语句

介绍

  • 使用WHERE 子句,将不满足条件的行过滤掉。
  • WHERE 子句紧随 FROM 子句。
  • 案例

    select * from emp where sal >1000;

比较运算符(Between/In/ Is Null)

Hive四Hive基本查询详解大数据

Hive四Hive基本查询详解大数据

案例操作

  • 查询出薪水等于5000的所有员工

sql select * from emp where sal =5000;

  • 查询工资在500到1000的员工信息

sql select * from emp where sal between 500 and 1000;

  • 查询comm为空的所有员工信息

sql select * from emp where comm is null;

  • 查询工资是1500和5000的员工信息

sql select * from emp where sal IN (1500, 5000);

Like和RLike

  • 使用LIKE运算选择类似的值
  • 选择条件可以包含字符或数字
  • % 代表零个或多个字符(任意个字符)
  • _ 代表一个字符

  • RLIKE子句是Hive中这个功能的一个扩展,其可以通过Java的正则表达式这个更强大的语言来指定匹配条件。

  • 案例实操
  • 查找以2开头薪水的员工信息

    select * from emp where sal LIKE '2%';

  • 查找第二个数值为2的薪水的员工信息

    select * from emp where sal LIKE '_2%';

  • 查找薪水中含有2的员工信息

    select * from emp where sal RLIKE '[2]';

逻辑运算符(And/Or/Not)

Hive四Hive基本查询详解大数据

案例实操

  • 查询薪水大于1000,部门是30

sql select * from emp where sal>1000 and deptno=30;

  • 查询薪水大于1000,或者部门是30

sql select * from emp where sal>1000 or deptno=30;

  • 查询除了20部门和30部门以外的员工信息

sql select * from emp where deptno not IN(30, 20);

分组

Group By语句

  • 描述

GROUP BY语句通常会和聚合函数一起使用,按照一个或者多个列队结果进行分组,然后对每个组执行聚合操作

案例实操

  • 计算emp表每个部门的平均工资

sql select t.deptno, avg(t.sal) avg_sal from emp t group by t.deptno;

  • 计算emp每个部门中每个岗位的最高薪水

sql select t.deptno, t.job, max(t.sal) max_sal from emp t group by t.deptno, t.job;

Having语句

  • having与where不同点
  1. where针对表中的列发挥作用,查询数据;having针对查询结果中的列发挥作用,筛选数据
  2. where后面不能写分组函数,而having后面可以使用分组函数
  3. having只用于group by分组统计语句

案例实操

  • 求每个部门的平均工资

sql select deptno, avg(sal) from emp group by deptno;

  • 求每个部门的平均薪水大于2000的部门

sql select deptno, avg(sal) avg_sal from emp group by deptno having avg_sal > 2000;

Join语句

等值Join

Hive支持通常的SQL JOIN语句,但是只支持等值连接,不支持非等值连接

案例操作

  • 根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号

sql select e.empno, e.ename, d.deptno, d.dname from emp e join dept d on e.deptno = d.deptno;

内连接

只有进行连接的两个表中都存在与连接条件相匹配的数据才会被保留下来

sql select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;

左外连接

JOIN操作符左边表中符合WHERE子句的所有记录将会被返回

sql select e.empno, e.ename, d.deptno from emp e left join dept d on e.deptno = d.deptno;

右外连接

JOIN操作符右边表中符合WHERE子句的所有记录将会被返回

select e.empno, e.ename, d.deptno from emp e right join dept d on e.deptno = d.deptno;

满外连接

将会返回所有表中符合WHERE语句条件的所有记录。如果任一表的指定字段没有符合条件的值的话,那么就使用NULL值替代

select e.empno, e.ename, d.deptno from emp e full join dept d on e.deptno = d.deptno;

多表连接

注意:连接 n个表,至少需要n-1个连接条件。例如:连接三个表,至少需要两个连接条件

  • 数据准备

1700 Beijing
1800 London
1900 Tokyo

  • 创建位置表

sql create table if not exists default.location( loc int, loc_name string ) row format delimited fields terminated by ‘/t’;

  • 导入数据

sql load data local inpath ‘/opt/module/datas/location.txt’ into table default.location;

  • 多表连接查询

sql SELECT e.ename, d.deptno, l. loc_name FROM emp e JOIN dept d ON d.deptno = e.deptno JOIN location l ON d.loc = l.loc;

  • 总结

大多数情况下,Hive会对每对JOIN连接对象启动一个MapReduce任务。本例中会首先启动一个MapReduce job对表e和表d进行连接操作,然后会再启动一个MapReduce job将第一个MapReduce job的输出和表l;进行连接操作。

注意:为什么不是表d和表l先进行连接操作呢?这是因为Hive总是按照从左到右的顺序执行的。

笛卡尔积 JOIN

  • 笛卡尔集会在下面条件下产生
  1. 省略连接条件
  2. 连接条件无效
  3. 所有表中的所有行互相连接
  • 案例

sql select empno, deptno from emp, dept; FAILED: SemanticException Column deptno Found in more than One Tables/Subqueries

排序

全局排序(Order By)

  • Order By:全局排序,一个MapReduce

  • 使用 ORDER BY 子句排序
  • ASC(ascend): 升序(默认)
  • DESC(descend): 降序

  • ORDER BY 子句在SELECT语句的结尾

  • 案例实操

  • 查询员工信息按工资升序排列

    select * from emp order by sal;

  • 查询员工信息按工资降序排列

    select * from emp order by sal desc;

按照别名排序

  • 按照员工薪水的2倍排序

sql select ename, sal*2 twosal from emp order by twosal;

多个列排序

  • 按照部门和工资升序排序

sql select ename, deptno, sal from emp order by deptno, sal ;

Sort By排序(每个MapReduce内部排序)

  • Sort By:每个MapReduce内部进行排序,对全局结果集来说不是排序

  • 设置reduce个数

set mapreduce.job.reduces=3;

  • 查看设置reduce个数

set mapreduce.job.reduces;

  • 根据部门降序查看员工信息

sql select * from emp sort by empno desc;

  • 将查询结果导入到文件中(按照部门编号降序排序)

sql insert overwrite local directory ‘/opt/module/datas/sortby-result’ select * from emp sort by deptno desc;

分区排序(Distribute By)

  • Distribute By:类似MR中partition,进行分区,结合sort by使用

  • 注意,Hive要求DISTRIBUTE BY语句要写在SORT BY语句之前

  • 案例实操
  • 先按照部门编号分区,再按照员工编号降序排序

    insert overwrite local directory '/opt/module/datas/distby-desc' select * from emp distribute by deptno sort by empno desc;

Cluster By

  • 当distribute by和sorts by字段相同时,可以使用cluster by方式

  • cluster by除了具有distribute by的功能外还兼具sort by的功能。但是排序只能是倒序排序,不能指定排序规则为ASC或者DESC

  • 以下两种写法等价
  1. select * from emp cluster by deptno;
  2. select * from emp distribute by deptno sort by deptno;
  • 注意:按照部门编号分区,不一定就是固定死的数值,可以是20号和30号部门分到一个分区里面去

桶及抽样查询

分桶表数据存储

  • 分区针对的是数据的存储路径;分桶针对的是数据文件

  • 分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区,特别是之前所提到过的要确定合适的划分大小这个疑虑

  • 分桶是将数据集分解成更容易管理的若干部分的另一个技术

  • 先创建分桶表,通过直接导入数据文件的方式
  1. 数据准备(student.txt)
    1001 ss1 1002 ss2 1003 ss3 1004 ss4 1005 ss5 1006 ss6 1007 ss7 1008 ss8 1009 ss9 1010 ss10 1011 ss11 1012 ss12 1013 ss13 1014 ss14 1015 ss15 1016 ss16

  2. 创建分桶表
    sql create table stu_buck(id int, name string) clustered by(id) into 4 buckets row format delimited fields terminated by ‘/t’;

  3. 查看表结构
    “`sql
    desc formatted stu_buck;

    Num Buckets: 4
    “`

  4. 导入数据到分桶表中
    sql load data local inpath ‘/opt/module/datas/student.txt’ into table stu_buck;

  5. 查看创建的分桶表中是否分成4个桶,并没有!!??以下讲解

Hive四Hive基本查询详解大数据

  • 创建分桶表时,数据通过子查询的方式导入
  1. 先建一个普通的stu表

    sql create table stu(id int, name string) row format delimited fields terminated by ‘/t’;

  2. 向普通的stu表中导入数据

    sql load data local inpath ‘/opt/module/datas/student.txt’ into table stu;

  3. 清空stu_buck表中数据

    “`sql
    truncate table stu_buck;

    select * from stu_buck;
    “`

  4. 导入数据到分桶表,通过子查询的方式

    sql insert into table stu_buck select id, name from stu cluster by(id);

  5. 发现还是只有一个分桶

    Hive四Hive基本查询详解大数据

  6. 需要设置一个属性

    “`sql
    set hive.enforce.bucketing=true;

    set mapreduce.job.reduces=-1;

    insert into table stu_buck select id, name from stu cluster by(id);
    “`

  7. 查询分桶的数据

    sql select * from stu_buck;

Hive四Hive基本查询详解大数据

分桶抽样查询

  • 先建一个普通的stu表

sql create table stu(id int, name string) row format delimited fields terminated by ‘/t’;

  • 向普通的stu表中导入数据

sql load data local inpath ‘/opt/module/datas/student.txt’ into table stu;

  • 清空stu_buck表中数据

“`sql
truncate table stu_buck;

select * from stu_buck;
“`

  • 导入数据到分桶表,通过子查询的方式

“`sql
insert into table stu_buck

select id, name from stu cluster by(id);
“`

  • 发现还是只有一个分桶

Hive四Hive基本查询详解大数据

  • 需要设置一个属性

“`sql
set hive.enforce.bucketing=true;

set mapreduce.job.reduces=-1;

insert into table stu_buck

select id, name from stu cluster by(id);
“`

  • 查询分桶的数据

sql select * from stu_buck;

分桶抽样查询

  • 对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive可以通过对表进行抽样来满足这个需求。
    查询表stu_buck的数据

sql select * from stu_buck TABLESAMPLE(bucket 1 out of 4 on id);

注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)

  • y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据

  • x表示从哪个bucket开始抽取。例如,table总bucket数为4,tablesample(bucket 4 out of 4),表示总共抽取(4/4=)1个bucket的数据,抽取第4个bucket的数据

  • 注意:x的值必须小于等于y的值,否则

FAILED: SemanticException [Error 10061]: Numerator should not be bigger than denominator in sample clause for table stu_buck

数据块抽样

  • Hive提供了另外一种按照百分比进行抽样的方式,这种事基于行数的,按照输入路径下的数据块百分比进行的抽样
  • select * from stu tablesample(0.1 percent);
  • 提示:这种抽样方式不一定适用于所有的文件格式。另外,这种抽样的最小抽样单元是一个HDFS数据块。因此,如果表的数据大小小于普通的块大小128M的话,那么将会返回所有行

原创文章,作者:奋斗,如若转载,请注明出处:https://blog.ytso.com/9148.html

(0)
上一篇 2021年7月19日
下一篇 2021年7月19日

相关推荐

发表回复

登录后才能评论